18 research outputs found

    Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts.

    Get PDF
    The Hypoxia-inducible transcription Factor (HIF) represents an important adaptive mechanism under hypoxia, whereas sustained activation may also have deleterious effects. HIF activity is determined by the oxygen regulated α-subunits HIF-1α or HIF-2α. Both are regulated by oxygen dependent degradation, which is controlled by the tumor suppressor "von Hippel-Lindau" (VHL), the gatekeeper of renal tubular growth control. HIF appears to play a particular role for the kidney, where renal EPO production, organ preservation from ischemia-reperfusion injury and renal tumorigenesis are prominent examples. Whereas HIF-1α is inducible in physiological renal mouse, rat and human tubular epithelia, HIF-2α is never detected in these cells, in any species. In contrast, distinct early lesions of biallelic VHL inactivation in kidneys of the hereditary VHL syndrome show strong HIF-2α expression. Furthermore, knockout of VHL in the mouse tubular apparatus enables HIF-2α expression. Continuous transgenic expression of HIF-2α by the Ksp-Cadherin promotor leads to renal fibrosis and insufficiency, next to multiple renal cysts. In conclusion, VHL appears to specifically repress HIF-2α in renal epithelia. Unphysiological expression of HIF-2α in tubular epithelia has deleterious effects. Our data are compatible with dedifferentiation of renal epithelial cells by sustained HIF-2α expression. However, HIF-2α overexpression alone is insufficient to induce tumors. Thus, our data bear implications for renal tumorigenesis, epithelial differentiation and renal repair mechanisms

    A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    Get PDF
    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation

    Assessing bulk carbonates as archives for seawater Li isotope ratios

    Get PDF
    Silicate weathering is a primary control on the carbon cycle and therefore long-term climate. Tracing silicate weathering in the geological record has been a challenge for decades, with a number of proxies proposed and their limits determined. Recently lithium isotopes in marine carbonates have emerged as a potential tracer. Bulk carbonates are increasingly being used as a Li isotope archive, though with limited tests thus far of the robustness of this approach in the modern ocean. As the bulk composition of marine pelagic carbonates has changed through time and geographically, assessing the fidelity of bulk carbonate as proxy carrier is fundamental. To address the impact of compositional variability in bulk carbonate on Li isotopes, we examine 27 Bahamian aragonitic bulk carbonates and 16 Atlantic largely calcitic core-top sediment samples. Two core-tops only have trace (<10 %) carbonate, and are analysed to test whether carbonates in such sections are still a viable archive. We selectively extract the exchangeable and carbonate fractions from the core-top samples. The exchangeable fraction contains ∼2 % of the total Li and has a fairly constant offset from seawater of 16.5 ± 0.8‰. When leaching silicate-containing carbonates, acetic acid buffered with sodium acetate appears a more robust method of solely attacking carbonates compared to dilute HCl, which may also liberate some silicate-bound Li. Carbonates from samples that do not contain aragonite have the isotopic fractionation of seawater of Δ7Liseawater-calcite = 6.1 ± 1.3‰ (2sd), which is not affected by latitude or the water depth the sample was deposited at. The pure aragonite bulk carbonates from the Bahamas have a fractionation of Δ7Liseawater-aragonite = 9.6 ± 0.6‰. A sediment sample from the Galician coast that mostly consists of quartz is highly offset from seawater by ∼20‰ and also has relatively high Li/Ca ratios. These high values are not due to leaching of silicate material directly (Al/Ca ratios are low). We interpret this addition via cation exchange of Li from silicate during recrystallisation. Overall bulk carbonates from the open ocean are a reliable archive of seawater δ7Li, but care must be taken with carbonate mineralogy and low-carbonate samples. Overall, therefore, any examination of the palaeo-seawater δ7Li record must be reproduced in different global settings (e.g. multiple global cores) before it can be considered robust

    Der Apostel Geschichten

    No full text
    exeget. u. dogmat. bearb. von Gottfried Victor Lechler, homiletisch von Karl Gero
    corecore