36 research outputs found

    3D Multi-isotope Imaging Mass Spectrometry Reveals Penetration of 18O^{18}O-Trehalose in Mouse Sperm Nucleus

    Get PDF
    The prevalence of genetically engineered mice in medical research has led to ever increasing storage costs. Trehalose has a significant beneficial effect in preserving the developmental potential of mouse sperm following partial desiccation and storage at temperatures above freezing. Using multi-isotope imaging mass spectrometry, we are able to image and measure trehalose in individual spermatozoa. We provide the first evidence that trehalose penetrates the nucleus of a mammalian cell, permitting tolerance to desiccation. These results have broad implications for long-term storage of mammalian cells

    Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Get PDF
    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php

    Age Mosaicism across Multiple Scales in Adult Tissues

    Get PDF
    Most neurons are not replaced during an animal’s lifetime. This nondividing state is characterized by extreme longevity and age-dependent decline of key regulatory proteins. To study the lifespans of cells and proteins in adult tissues, we combined isotope labeling of mice with a hybrid imaging method (MIMS-EM). Using ^(15)N mapping, we show that liver and pancreas are composed of cells with vastly different ages, many as old as the animal. Strikingly, we also found that a subset of fibroblasts and endothelial cells, both known for their replicative potential, are characterized by the absence of cell division during adulthood. In addition, we show that the primary cilia of beta cells and neurons contains different structural regions with vastly different lifespans. Based on these results, we propose that age mosaicism across multiple scales is a fundamental principle of adult tissue, cell, and protein complex organization

    Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila

    Get PDF
    SummaryStem cells reside in specialized microenvironments known as niches. During Drosophila development, glial cells provide a niche that sustains the proliferation of neural stem cells (neuroblasts) during starvation. We now find that the glial cell niche also preserves neuroblast proliferation under conditions of hypoxia and oxidative stress. Lipid droplets that form in niche glia during oxidative stress limit the levels of reactive oxygen species (ROS) and inhibit the oxidation of polyunsaturated fatty acids (PUFAs). These droplets protect glia and also neuroblasts from peroxidation chain reactions that can damage many types of macromolecules. The underlying antioxidant mechanism involves diverting PUFAs, including diet-derived linoleic acid, away from membranes to the core of lipid droplets, where they are less vulnerable to peroxidation. This study reveals an antioxidant role for lipid droplets that could be relevant in many different biological contexts

    Visualization of the intrarenal distribution of capillary blood flow

    No full text
    Abstract This study describes a modified technique to fill the renal vasculature with a silicon rubber (Microfil) compound and obtain morphologic information about the intrarenal distribution of capillary blood flow under a variety of conditions. Kidneys and cremaster muscles of rats were perfused in vivo with Microfil using a perfusion pressure equal to the animal's mean arterial pressure at body temperature. Microfil did not alter arteriolar diameter or the pattern of flow in the microcirculation of the cremaster muscle. The modified protocol reproducibly filled the renal vasculature, including; glomerular, peritubular, and vasa recta capillaries. We compared the filling of the renal circulation in control rats with that seen in animals subjected to maneuvers reported to alter the intrarenal distribution of blood flow. Infusion of angiotensin II, hypotension, volume expansion, and mannitol‐ or furosemide‐induced diuresis redistributed flow between renal cortical and medullary capillaries. The advantage of the current technique is that it provides anatomical information regarding the number, diameter, and branching patterns of capillaries in the postglomerular circulation critical in determining the intrarenal distribution of cortical and medullary blood flow
    corecore