6 research outputs found

    Prospects for macroscopic dark matter detection at space-based and suborbital experiments

    Full text link
    We compare two different formalisms for modeling the energy deposition of macroscopically sized/massive quark nuggets (a.k.a. macros) in the Earth's atmosphere. We show that for a reference mass of 1 g, there is a discrepancy in the macro luminosity of about 14 orders of magnitude between the predictions of the two formalisms. Armed with our finding we estimate the sensitivity for macro detection at space-based (Mini-EUSO and POEMMA) and suborbital (EUSO-SPB2) experiments.Comment: 5 pages revtex, 3 figure

    >

    No full text

    Automated Detection of Short Optical Transients of Astrophysical Origin in Real Time

    Get PDF
    The detection of short optical transients of astrophysical origin in real time is an important task for existing robotic telescopes. The faster a new optical transient is detected, the earlier follow-up observations can be started. The sooner the object is identified, the more data can be collected before the source fades away, particularly in the most interesting early period of the transient. In this the real-time pipeline designed for identification of optical flashes with the “Pi of the Sky” project will be presented in detail together with solutions used by other experiments

    “Pi of the Sky” Detector

    Get PDF
    “Pi of the Sky” experiment has been designed for continuous observations of a large part of the sky, in search for astrophysical phenomena characterized by short timescales, especially for prompt optical counterparts of Gamma Ray Bursts (GRBs). Other scientific goals include searching for novae and supernovae stars and monitoring of blasars and AGNs activity. “Pi of the Sky” is a fully autonomous, robotic detector, which can operate for long periods of time without a human supervision. A crucial element of the detector is an advanced software for real-time data analysis and identification of short optical transients. The most important result so far has been an independent detection and observation of the prompt optical emission of the “naked-eye” GRB080319B

    The EUSO@TurLab project in view of Mini-EUSO and EUSO-SPB2 missions

    No full text
    International audienceThe TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the fourth basement level of the Physics Department of the University of Turin. In the past years, we have used the facility to perform experiments related to the observations of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique for JEM-EUSO missions with the main objective to test the response of the trigger logic. In the missions, the diffuse night brightness and artificial and natural light sources can vary significantly in time and space in the Field of View (FoV) of the telescope. Therefore, it is essential to verify the detector performance and test the trigger logic under such an environment. By means of the tank rotation, a various terrestrial surface with the different optical characteristics such as ocean, land, forest, desert and clouds, as well as artificial and natural light sources such as city lights, lightnings and meteors passing by the detector FoV one after the other is reproduced. The fact that the tank is located in a very dark place enables the tests under an optically controlled environment. Using the Mini-EUSO data taken since 2019 onboard the ISS, we will report on the comparison between TurLab and ISS measurements in view of future experiments at TurLab. Moreover, in the forthcoming months we will start testing the trigger logic of the EUSO-SPB2 mission. We report also on the plans and status for this purpose
    corecore