23 research outputs found

    Mechanism of immunoregulatory properties of vasoactive intestinal peptide in the K/BxN mice model of autoimmune arthritis

    Get PDF
    The K/BxN mouse model of rheumatoid arthritis (RA) closely resembles the human disease. In this model, arthritis results from activation of autoreactive KRN T cells recognizing the glycolytic enzyme glucose-6-phosphate isomerase (GPI) autoantigen, which provides help to GPI-specific B cells, resulting in the production of pathogenic antiGPI antibodies that ultimately leads to arthritis symptoms from 4 weeks of age. Vasoactive intestinal peptide (VIP) is a neuropeptide broadly distributed in the central and peripheral nervous system that is also expressed in lymphocytes and other immune cell types. VIP is a modulator of innate and adaptive immunity, showing anti-inflammatory and immunoregulatory properties. Basically, this neuropeptide promotes a shift in the Th1/ Th2 balance and enhances dedifferentiation of T regulatory cells (Treg). It has demonstrated its therapeutic effects on the collagen-induced arthritis (CIA) mouse model of RA. In the present hypothesis and theory article, we propose that the immunoregulatory properties of VIP may be due likely to the inhibition of T cell plasticity toward non-classic Th1 cells and an enhanced follicular regulatory T cells (Tfr) activity. The consequences of these regulatory properties are the reduction of systemic pathogenic antibody titers

    Vasoactive Intestinal Peptide maintains the non-pathogenic profile of human Th17-polarized cells

    Get PDF
    The cytokine microenvironment modulates CD4 T cell differentiation causing the shift of naïve CD4 T cells into different cell subsets. This process is also regulated by modulators such as VIP, a neuropeptide with known immunomodulatory properties on CD4 T cells that exert this action through specific receptors, VPAC1 and VPAC2. Our results show that the pattern of VIP receptors expression ratio is modified during Th17 differentiation. In this report, we evaluate the capacity of VIP to modulate naïve human cells into Th17 cells in vitro by analyzing their functional phenotype. The presence of VIP maintains the non-pathogenic profile of Th17-polarized cells, increases the proliferation rate and decreases their Th1 potential. VIP induces the up-regulation of the STAT3 gene interaction with the VPAC1 receptor during the onset of Th17 differentiation. Moreover, RORC, RORA and IL-17A genes are up-regulated in the presence of VIP through interaction with VPAC1 and VPAC2 receptors. Interestingly, VIP induces the expression of the IL-23R gene through interaction with the VPAC2 receptor during the expansion phase. This is the first report that describes the differentiation of naïve human T cells to Th17-polarized cells in the presence of VIP and demonstrates how this differentiation regulates the expression of the VIP receptors

    Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis

    Get PDF
    Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response

    The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP

    Get PDF
    Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4+CD45RO+ T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyseswere performed. An increase in CCR6+/RORC+ cells and in RORC-proliferating cells and a decrease in T-betproliferating cells and T-bet+/RORC+ cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rβ2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets

    Effect of VIP on the balance between cytokines and master regulators of activated helper T cells

    No full text
    Funding This work was supported by grants PI080025 from the Instituto de Salud Carlos III (ISCIII), GR58/08 from UCM-BSCH and by grants from the ISCIII to RJ and SPG. This work was partially supported by RETICS Program, RD08/0075 (RIER) from ISCIII, within the VI PN de I+D+I 2008-2011.CD4T helper cells are decisive in the struggle against pathogens and in maintaining immune homeostasis. Nevertheless, they also drive immune-mediated disease. Recently, emerging evidence suggests that seemingly committed Th cells possess plasticity and may convert into other types of effector cells. Vasoactive Intestinal Peptide (VIP) is an immunomodulator neuropeptide, which is able to promote or inhibit individually the differentiation or function of some T-helper subsets. We conducted ex vivo study with erythrocyte-depleted spleen cells from healthy mice to check the balance between cytokines and master regulators of different T-helper subsets. This neuropeptide adversely affected the differentiation and functionality phases of Th17 cells and had a negative influence on cytokines related to Th1 function, increasing Th17 cells over those of the Th1 cell subset. With respect to Th2 subsets, VIP augmented the interleukin (IL)-4/IL-9 mRNA ratio, and a negative correlation between IL-4 and IL-9 was observed in culture supernatants. VIP augmented Th2 relative to Th1 in cell subsets. VIP decreased the iTreg/Th17 balance. Regarding the induced T-regulatory (iTreg)/Th1 balance, VIP increased the presence of immunoregulatory cytokines in relation to IFNγ. Although additional studies are needed to clarify the role of VIP on the balance between cytokines and master regulators during T-helper differentiation, our data show that VIP reduces Th17/Th1 and Th1/Th2 ratios. However, the iTreg/Th17 ratio was differently counterbalanced, probably because of culture conditions. Finally, this is the first study showing that VIP also modulates Th2/Th9 and iTreg/Th1 ratios.Instituto de Salud Carlos III (ISCIII)Redes temáticas de Investigación Cooperativa en Salud (RETICS)UCM-BSCHDepto. de Biología CelularFac. de Ciencias BiológicasFac. de MedicinaTRUEpu

    Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis

    No full text
    This work was supported by grant PIE13/00041 from Instituto de Salud Carlos III and co-funded by Fondo Europeo de Desarrollo Regional (FEDER) to MM, IG-A, FS-M and MY-M, and BFU2014-55478-R from Ministerio de Economía y Competitividad to MY-M.Extracellular vesicles (EVs) are emerging as potent non-invasive biomarkers. However, current methodologies are time consuming and difficult to translate to clinical practice. To analyse EV-encapsulated circulating miRNA, we searched for a quick, easy and economic method to enrich frozen human serum samples for EV. We compared the efficiency of several protocols and commercial kits to isolate EVs. Different methods based on precipitation, columns or filter systems were tested and compared with ultracentrifugation, which is the most classical protocol to isolate EVs. EV samples were assessed for purity and quantity by nanoparticle tracking analysis and western blot or cytometry against major EV protein markers. For biomarker validation, levels of a set of miRNAs were determined in EV fractions and compared with their levels in total serum. EVs isolated with precipitation-based methods were enriched for a subgroup of miRNAs that corresponded to miRNAs described to be encapsulated into EVs (miR-126, miR-30c and miR-143), while the detection of miR-21, miR-16-5p and miR-19a was very low compared with total serum. Our results point to precipitation using polyethylene glycol (PEG) as a suitable method for an easy and cheap enrichment of serum EVs for miRNA analyses. The overall performance of PEG was very similar, or better than other commercial precipitating reagents, in both protein and miRNA yield, but in comparison to them PEG is much cheaper. Other methods presented poorer results, mostly when assessing miRNA by qPCR analyses. Using PEG precipitation in a longitudinal study with human samples, we demonstrated that miRNA could be assessed in frozen samples up to 8 years of storage. We report a method based on a cut-off value of mean of fold EV detection versus serum that provides an estimate of the degree of encapsulation of a given miRNA.Depto. de Biología CelularFac. de Ciencias BiológicasTRUEpu

    Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect

    No full text
    Several studies in humans indicate the implication of Th17 cells in RA. Therapies targeting their pathogenicity, as well as their plasticity to the Th17/1 phenotype, could ameliorate the progression of the pathology. The neuroendocrine environment has a major impact on the differentiation of lymphoid cells. VIP is present in the microenvironment of the joint, and its known therapeutic effects are supported by several studies on RA. We examine the ability of VIP to modulate the differentiation of Th17 cells. Peripheral blood CD4+CD45RO+ T cells from HD and eRA patients were expanded under Th17-polarizing conditions in the presence of TGF-b. After 7 days, the higher IL-17A, IL-21, and IL-9 levels and lower IL-22 levels indicate the nonpathogenic profile for Th17 cells in HD. In contrast, Th17 cells from eRA patients produced significantly more IL-22 and IFN-g, and these cells show a more Th17/1 profile, indicating a pathogenic phenotype. Interestingly, when VIP was present in the Th17 conditioned medium, increased levels of IL-10 and IL-9 were detected in HD and eRA patients. VIP also reduced the levels of IL-22 in eRA patients. These data suggest that VIP reduces the pathogenic profile of the Th17-polarized cells. This effect was accompanied by an increased in the Treg/Th17 profile, as shown by the increase levels of Foxp3. In conclusion, this report addresses a novel and interesting question on the effect of VIP on human Th17 cells and adds clinical relevance by analyzing, in parallel, HD and eRA patients. J. Leukoc. Biol. 98: 000–000; 2015

    The pathogenic Th profile of human activated memory Th cells in early rheumatoid arthritis can be modulated by VIP

    No full text
    Our aim is to study the behavior of memory Th cells (Th17, Th17/1, and Th1 profiles) from early rheumatoid arthritis (eRA) patients after their in vitro activation/expansion to provide information about its contribution to RA chronicity. Moreover, we analyzed the potential involvement of vasoactive intestinal peptide (VIP) as an endogenous healing mediator. CD4+CD45RO+ T cells from PBMCs of HD and eRA were activated/expanded in vitro in the presence/absence of VIP. FACS, ELISA, RT-PCR, and immunocytochemistry analyseswere performed. An increase in CCR6+/RORC+ cells and in RORC-proliferating cells and a decrease in T-betproliferating cells and T-bet+/RORC+ cells were shown in eRA. mRNA expression of IL-17, IL-2, RORC, RORA, STAT3, and Tbx21 and protein secretion of IL-17, IFNγ, and GM-CSF were higher in eRA. VIP decreased the mRNA expression of IL-22, IL-2, STAT3, Tbx21, IL-12Rβ2, IL-23R, and IL-21R in HD and it decreased IL-21, IL-2, and STAT3 in eRA. VIP decreased IL-22 and GM-CSF secretion and increased IL-9 secretion in HD and it decreased IL-21 secretion in eRA. VPAC2/VPAC1 ratio expression was increased in eRA. All in all, memory Th cells from eRA patients show a greater proportion of Th17 cells with a pathogenic Th17 and Th17/1 profile compared to HD. VIP is able to modulate the pathogenic profile, mostly in HD. Our results are promising for therapy in the early stages of RA because they suggest that targeting molecules involved in the pathogenic Th17, Th17/1, and Th1 phenotypes and targeting VIP receptors could have a therapeutic effect modulating these subsets.Instituto de Salud Carlos IIIComunidad de MadridDepto. de Biología CelularFac. de Ciencias BiológicasTRUEpu

    Serum Levels of Vasoactive Intestinal Peptide as a Prognostic Marker in Early Arthritis

    Get PDF
    <div><p>Objective</p><p>Suitable biomarkers are essential for the design of therapeutic strategies in personalized medicine. Vasoactive intestinal peptide (VIP) has demonstrated immunomodulatory properties in autoimmune murine and ex vivo human models. Our aim was to study serum levels of VIP during the follow-up of an early arthritis (EA) cohort and to analyze its value as a biomarker predicting severity and therapeutic requirements.</p><p>Methods</p><p>Data from 91 patients on an EA register were analyzed (76% rheumatoid arthritis (RA), 24% undifferentiated arthritis, 73% women, and median age 54 years; median disease duration at entry, 5.4 months). We collected per protocol sociodemographic, clinical, and therapeutic data. VIP levels were determined by enzyme immunoassay in sera harvested from the 91 patients (353 visits; 3.9 visit/patient) and from 100 healthy controls. VIP values below the 25<sup>th</sup> percentile of those assessed in healthy population were considered low. To determine the effect of independent variables on VIP levels, we performed a longitudinal multivariate analysis nested by patient and visit. A multivariate ordered logistic regression was modeled to determine the effect of low VIP serum levels on disease activity at the end of follow-up.</p><p>Results</p><p>VIP concentrations varied considerably across EA patients. Those fulfilling the criteria for RA had the lowest values in the whole sample, although no significant differences were observed compared with healthy donors. Disease activity, which was assessed using DAS28, inversely correlated with VIP levels. After a two-year follow-up, those patients with low baseline levels of VIP displayed higher disease activity and received more intensive treatment.</p><p>Conclusion</p><p>Patients who are unable to up-regulate VIP seem to have a worse clinical course despite receiving more intense treatment. Therefore, measurement of VIP levels may be suitable as a prognostic biomarker.</p></div
    corecore