846 research outputs found

    Influence of the photonuclear effect on electron-neutrino-induced electromagnetic cascades under the Landau-Pomeranchuk-Migdal regime in standard rock

    Full text link
    The observation of earth skimming neutrinos has been proposed as a rather sensitive method to detect ultra-high energy (UHE) cosmic neutrinos. Energetic cosmic neutrinos can interact inside the rock and produce leptons via a charged current interaction. In the case of an incoming electron neutrino undergoing a charged current interaction, the produced UHE electron will induce an underground electromagnetic shower. At high energy (above 7.7 TeV in standard rock), such showers are subject to LPM (Landau, Pomeranchuk and Migdal) suppression of the radiative processes cross sections (bremsstrahlung and pair production). The consequence of this suppression is that showers are elongated. This effect will increase the detection probability of such events allowing deeper showers to emerge with detectable energies. On the other hand, the photonuclear processes which are usually neglected in electromagnetic showers with respect to radiative processes, turn out to become dominant in the LPM regime and will reduce the shower length. In this work, we have performed a complete Monte Carlo study of an underground shower induced by UHE electrons by taking into account both the LPM suppression and the photonuclear interaction. We will discuss the effects of both of these processes on the shower length and on the detectability of such events by ground arrays or fluorescence telescopes. We show that limits on neutrino fluxes that were obtained using simulations that were obviously neglecting photonuclear processes are overoptimistic and should be corrected.Comment: 6 pages, 7 figure

    Variable polarization measured in the prompt emission of GRB 041219A using IBIS on board INTEGRAL

    Full text link
    Polarization measurements provide direct insight into the nature of astrophysical processes. Unfortunately, only a few instruments are available for this kind of measurements at gamma-ray energies, and the sources need to be very bright. Gamma-Ray Bursts (GRBs) are ideal candidates due to their large flux over limited time intervals, maximizing the available signal-to-noise ratio. To date a few polarization measurements have been reported, claiming of a high degree of polarization in the prompt emission of GRBs but with low statistical evidence. We used the IBIS telescope on board the INTEGRAL satellite to measure the polarization of the prompt gamma-ray emission of the long and bright GRB 041219A in the 200-800 keV energy band. We find a variable degree of polarization ranging from less than 4% over the first peak to 43+/-25% for the whole second peak. Time resolved analysis of both peaks indicates a high degree of polarization, and the null average polarization in the first peak can be explained by the rapid variations observed in the polarization angle and degree. Our results are consistent with different models for the prompt emission of GRBs at these energies, but they favor synchrotron radiation from a relativistic outflow with a magnetic field which is coherent on an angular size comparable with the angular size of the emitting region (~1/Gamma) . Indeed this model has the best capabilities to maintain a high polarization level, and to produce the observed variability.Comment: 7 pages, 3 figures, accepted for publication in the Astrophysical Journal Letter

    ROP18 Is a Rhoptry Kinase Controlling the Intracellular Proliferation of Toxoplasma gondii

    Get PDF
    Toxoplasma gondii is an obligate intracellular parasite for which the discharge of apical organelles named rhoptries is a key event in host cell invasion. Among rhoptry proteins, ROP2, which is the prototype of a large protein family, is translocated in the parasitophorous vacuole membrane during invasion. The ROP2 family members are related to protein-kinases, but only some of them are predicted to be catalytically active, and none of the latter has been characterized so far. We show here that ROP18, a member of the ROP2 family, is located in the rhoptries and re-localises at the parasitophorous vacuole membrane during invasion. We demonstrate that a recombinant ROP18 catalytic domain (amino acids 243–539) possesses a protein-kinase activity and phosphorylate parasitic substrates, especially a 70-kDa protein of tachyzoites. Furthermore, we show that overexpression of ROP18 in transgenic parasites causes a dramatic increase in intra-vacuolar parasite multiplication rate, which is correlated with kinase activity. Therefore, we demonstrate, to our knowledge for the first time, that rhoptries can discharge active protein-kinases upon host cell invasion, which can exert a long-lasting effect on intracellular parasite development and virulence

    Synergistic role of micronemal proteins in Toxoplasma gondii virulence

    Get PDF
    Apicomplexan parasites invade cells by a unique mechanism involving discharge of secretory vesicles called micronemes. Microneme proteins (MICs) include transmembrane and soluble proteins expressing different adhesive domains. Although the transmembrane protein TRAP and its homologues are thought to bridge cell surface receptors and the parasite submembranous motor, little is known about the function of other MICs. We have addressed the role of MIC1 and MIC3, two soluble adhesins of Toxoplasma gondii, in invasion and virulence. Single deletion of the MIC1 gene decreased invasion in fibroblasts, whereas MIC3 deletion had no effect either alone or in the mic1KO context. Individual disruption of MIC1 or MIC3 genes slightly reduced virulence in the mouse, whereas doubly depleted parasites were severely impaired in virulence and conferred protection against subsequent challenge. Single substitution of two critical amino acids in the chitin binding–like (CBL) domain of MIC3 abolished MIC3 binding to cells and generated the attenuated virulence phenotype. Our findings identify the CBL domain of MIC3 as a key player in toxoplasmosis and reveal the synergistic role of MICs in virulence, supporting the idea that parasites have evolved multiple ligand–receptor interactions to ensure invasion of different cells types during the course of infection

    Splendeur du béton : les prédécesseurs et l'oeuvre d'Auguste Perret

    Get PDF
    Referències bibliogràfiques. Índe

    Study of translaminar fracture toughness of unidirectional flax/epoxy composite

    Get PDF
    Ever growing applications of flax fiber-reinforced composites (FFRCs) and their suitability for structural uses involve implementing the design and failure criteria for these composites. Translaminar fracture is one of the primary failure modes of unidirectional (UD) fiber-reinforced composites, and measuring it is essential for design purposes and in many material failure studies. However, the translaminar fracture parameters have not been evaluated for UD-FFRCs; thus, there is no data available in the literature. Moreover, conventional test methods for this failure mode are complex, and there is no standard method for measuring this value in compression. In this study, the translaminar fracture behavior of a UD flax/epoxy composite has been examined, and its fracture toughness in tension and compression in the fiber direction are determined following existing standard meth- ods as well as using a methodology developed using infrared thermography. Compact tension specimens were adapted and used for this purpose. A fractographic study is conducted to examine the fracture surfaces and better understand the failure mechanisms. For tensile tests, the results of infrared thermography are in good agreement with those of ASTM E1922 and lie in the range of values obtained for similar composites in the literature

    The Gamma Cube: a new way to explore the gamma-ray sky

    Get PDF
    International audienceWe propose a new concept to allow the tracking of electrons in a gamma-ray telescope operating in the 5–100 MeV band. The idea of this experiment is to image the ionizing tracks that charged particles produce in a scintillator. It is a pair creation telescope at high energy and a Compton telescope with electron tracking at low energy. The telescope features a large scintillator transparent to the scintillation light, an ad-hoc optical system and a high resolution and highly sensitive imager. The performance perspectives and the advantages of such a system are outstanding but the technical difficulties are serious. A few years of research and development within the scientific community are required to reach the TRL level appropriate to propose the Gamma Cube in response to a flight opportunity
    corecore