191 research outputs found

    Postnatal PPARδ Activation and Myostatin Inhibition Exert Distinct yet Complimentary Effects on the Metabolic Profile of Obese Insulin-Resistant Mice

    Get PDF
    BACKGROUND: Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. METHODOLOGY/PRINCIPAL FINDINGS: Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. CONCLUSIONS/SIGNIFICANCE: The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM

    Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific

    Get PDF
    The human colonization of Remote Oceania remains one of the great feats of exploration in history, proceeding east from Asia across the vast expanse of the Pacific Ocean. Human commensal and domesticated species were widely transported as part of this diaspora, possibly as far as South America. We sequenced mitochondrial control region DNA from 122 modern and 22 ancient chicken specimens from Polynesia and Island Southeast Asia and used these together with Bayesian modeling methods to examine the human dispersal of chickens across this area. We show that specific techniques are essential to remove contaminating modern DNA from experiments, which appear to have impacted previous studies of Pacific chickens. In contrast to previous reports, we find that all ancient specimens and a high proportion of the modern chickens possess a group of unique, closely-related, haplotypes found only in the Pacific. This group of haplotypes appears to represent the authentic founding mitochondrial DNA chicken lineages transported across the Pacific, and allows the early dispersal of chickens across Micronesia and Polynesia to be modeled. Importantly, chickens carrying this genetic signature persist on several Pacific islands at high frequencies, suggesting that the original Polynesian chicken lineages may still survive. No early South American chicken samples have been detected with the diagnostic Polynesian mtDNA haplotypes, arguing against reports that chickens provide evidence of Polynesian contact with pre-European South America. Two modern specimens from the Philippines carry haplotypes similar to the ancient Pacific samples, providing clues about a potential homeland for the Polynesian chicken.Vicki A. Thomson, Ophélie Lebrasseur, Jeremy J. Austin, Terry Hunt, David Burney, Tim Denham, Nicolas J. Rawlence, Jamie R. Wood, Jaime Gongora, Linus Girdland Flink, Anna Linderholm, Keith Dobney, Greger Larson, Alan Cooper

    An autonomous chemically fuelled small-molecule motor

    Get PDF
    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.</p

    Eccentric exercise versus Usual-care with older cancer survivors: The impact on muscle and mobility- an exploratory pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resistance exercise programs with high compliance are needed to counter impaired muscle and mobility in older cancer survivors. To date outcomes have focused on older prostate cancer survivors, though more heterogeneous groups of older survivors are in-need. The purpose of this exploratory pilot study is to examine whether resistance exercise via negative eccentrically-induced work (RENEW) improves muscle and mobility in a diverse sample of older cancer survivors.</p> <p>Methods</p> <p>A total of 40 individuals (25 female, 15 male) with a mean age of 74 (± 6) years who have survived (8.4 ± 8 years) since their cancer diagnosis (breast, prostate, colorectal and lymphoma) were assigned to a RENEW group or a non-exercise Usual-care group. RENEW was performed for 12 weeks and measures of muscle size, strength, power and mobility were made pre and post training.</p> <p>Results</p> <p>RENEW induced increases in quadriceps lean tissue average cross sectional area (Pre: 43.2 ± 10.8 cm<sup>2</sup>; Post: 44.9 ± 10.9 cm<sup>2</sup>), knee extension peak strength (Pre: 248.3 ± 10.8 N; Post: 275.4 ± 10.9 N), leg extension muscle power (Pre: 198.2 ± 74.7 W; Post 255.5 ± 87.3 W), six minute walk distance (Pre: 417.2 ± 127.1 m; Post 466.9 ± 125.1 m) and a decrease on the time to safely descend stairs (Pre: 6.8 ± 4.5 s; Post 5.4 ± 2.5 s). A significant (P < 0.05) group x time interaction was noted for the muscle size and mobility improvements.</p> <p>Conclusions</p> <p>This exploration of RENEW in a heterogeneous cohort of older cancer survivors demonstrates increases in muscle size, strength and power along with improved mobility. The efficacy of a high-force, low perceived exertion exercise suggests RENEW may be suited to older individuals who are survivors of cancer.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00335491">NCT00335491</a></p

    Ancient chicken remains reveal the origins of virulence in Marek’s disease virus

    Get PDF
    The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek’s disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens

    Redefining the timing and circumstances of the chicken's introduction to Europe and north-west Africa

    Get PDF
    This is the final version. Available on open access from Cambridge University Press via the DOI in this recordLittle is known about the early history of the chicken (Gallus gallus domesticus), including the timing and circumstances of its introduction into new cultural environments. To evaluate its spatio-temporal spread across Eurasia and north-west Africa, the authors radiocarbon dated 23 chicken bones from presumed early contexts. Three-quarters returned dates later than those suggested by stratigraphy, indicating the importance of direct dating. The results indicate that chickens did not arrive in Europe until the first millennium BC. Moreover, a consistent time-lag between the introduction of chickens and their consumption by humans suggests that these animals were initially regarded as exotica and only several centuries later recognised as a source of ‘food’.Arts and Humanities Research Council (AHRC)Natural Environment Research Council (NERC)Chair of Palaeoanatomy, LMU Munic

    Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells

    Get PDF
    It has been reported previously that electric pulses of sufficiently high voltage and short duration can permeabilize the membranes of various organelles inside living cells. In this article, we describe electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. The cells were exposed to short, high-voltage electric pulses (from 1 to 20 pulses, 60 ns, 50 kV/cm, repetition frequency 1 kHz). We observed that 10 and 20 such pulses induced permeabilization of membranes of endocytotic vesicles, detected by release of lucifer yellow from the vesicles into the cytosol. Simultaneously, we detected uptake of propidium iodide through plasma membrane in the same cells. With higher number of pulses permeabilization of the membranes of endocytotic vesicles by pulses of given parameters is accompanied by permeabilization of plasma membrane. However, with lower number of pulses only permeabilization of the plasma membrane was detected
    corecore