1,907 research outputs found
Nonperturbative time dependent solution of a simple ionization model
We present a non-perturbative solution of the Schr\"odinger equation
,
written in units in which , describing the ionization of a model
atom by a parametric oscillating potential. This model has been studied
extensively by many authors, including us. It has surprisingly many features in
common with those observed in the ionization of real atoms and emission by
solids, subjected to microwave or laser radiation. Here we use new mathematical
methods to go beyond previous investigations and to provide a complete and
rigorous analysis of this system. We obtain the Borel-resummed transseries
(multi-instanton expansion) valid for all values of for the
wave function, ionization probability, and energy distribution of the emitted
electrons, the latter not studied previously for this model. We show that for
large and small the energy distribution has sharp peaks at
energies which are multiples of , corresponding to photon capture. We
obtain small expansions that converge for all , unlike those of
standard perturbation theory.
We expect that our analysis will serve as a basis for treating more realistic
systems revealing a form of universality in different emission processes
Solution of the time dependent Schr\"odinger equation leading to Fowler-Nordheim field emission
We solve the time-dependent Schr\"odinger equation describing the emission of
electrons from a metal surface by an external electric field , turned on at
. Starting with a wave function , representing a generalized
eigenfunction when , we find and show that it approaches, as
, the Fowler-Nordheim tunneling wavefunction . The
deviation of from decays asymptotically as a power law
. The time scales involved for typical metals and fields of
several V/nm are of the order of femtoseconds
Heat conduction in disordered harmonic lattices with energy conserving noise
We study heat conduction in a harmonic crystal whose bulk dynamics is
supplemented by random reversals (flips) of the velocity of each particle at a
rate . The system is maintained in a nonequilibrium stationary
state(NESS) by contacts with Langevin reservoirs at different temperatures. We
show that the one-body and pair correlations in this system are the same (after
an appropriate mapping of parameters) as those obtained for a model with
self-consistent reservoirs. This is true both for the case of equal and
random(quenched) masses. While the heat conductivity in the NESS of the ordered
system is known explicitly, much less is known about the random mass case. Here
we investigate the random system, with velocity flips. We improve the bounds on
the Green-Kubo conductivity obtained by C.Bernardin. The conductivity of the 1D
system is then studied both numerically and analytically. This sheds some light
on the effect of noise on the transport properties of systems with localized
states caused by quenched disorder.Comment: 19 pages, 8 figure
On time's arrow in Ehrenfest models with reversible deterministic dynamics
We introduce a deterministic, time-reversible version of the Ehrenfest urn
model. The distribution of first-passage times from equilibrium to
non-equilibrium states and vice versa is calculated. We find that average times
for transition to non-equilibrium always scale exponentially with the system
size, whereas the time scale for relaxation to equilibrium depends on
microscopic dynamics. To illustrate this, we also look at deterministic and
stochastic versions of the Ehrenfest model with a distribution of microscopic
relaxation times.Comment: 6 pages, 7 figures, revte
Phase transitions with four-spin interactions
Using an extended Lee-Yang theorem and GKS correlation inequalities, we
prove, for a class of ferromagnetic multi-spin interactions, that they will
have a phase transition(and spontaneous magnetization) if, and only if, the
external field (and the temperature is low enough). We also show the
absence of phase transitions for some nonferromagnetic interactions. The FKG
inequalities are shown to hold for a larger class of multi-spin interactions
Percolation in the Harmonic Crystal and Voter Model in three dimensions
We investigate the site percolation transition in two strongly correlated
systems in three dimensions: the massless harmonic crystal and the voter model.
In the first case we start with a Gibbs measure for the potential,
, , and , a scalar height variable, and define
occupation variables for . The probability
of a site being occupied, is then a function of . In the voter model we
consider the stationary measure, in which each site is either occupied or
empty, with probability . In both cases the truncated pair correlation of
the occupation variables, , decays asymptotically like .
Using some novel Monte Carlo simulation methods and finite size scaling we find
accurate values of as well as the critical exponents for these systems.
The latter are different from that of independent percolation in , as
expected from the work of Weinrib and Halperin [WH] for the percolation
transition of systems with [A. Weinrib and B. Halperin,
Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent
is very close to the predicted value of 2 supporting the conjecture by WH
that is exact.Comment: 8 figures. new version significantly different from the old one,
includes new results, figures et
Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder
It is shown that random quantum spin systems with centered disorder satisfy
correlation inequalities previously proved (arXiv:cond-mat/0612371) in the
classical case. Consequences include monotone approach of pressure and ground
state energy to the thermodynamic limit. Signs and bounds on the surface
pressures for different boundary conditions are also derived for finite range
potentials.Comment: 4 page
The Effect Of Microscopic Correlations On The Information Geometric Complexity Of Gaussian Statistical Models
We present an analytical computation of the asymptotic temporal behavior of
the information geometric complexity (IGC) of finite-dimensional Gaussian
statistical manifolds in the presence of microcorrelations (correlations
between microvariables). We observe a power law decay of the IGC at a rate
determined by the correlation coefficient. It is found that microcorrelations
lead to the emergence of an asymptotic information geometric compression of the
statistical macrostates explored by the system at a faster rate than that
observed in absence of microcorrelations. This finding uncovers an important
connection between (micro)-correlations and (macro)-complexity in Gaussian
statistical dynamical systems.Comment: 12 pages; article in press, Physica A (2010)
Multicomponent fluids of hard hyperspheres in odd dimensions
Mixtures of hard hyperspheres in odd space dimensionalities are studied with
an analytical approximation method. This technique is based on the so-called
Rational Function Approximation and provides a procedure for evaluating
equations of state, structure factors, radial distribution functions, and
direct correlations functions of additive mixtures of hard hyperspheres with
any number of components and in arbitrary odd-dimension space. The method gives
the exact solution of the Ornstein--Zernike equation coupled with the
Percus--Yevick closure, thus extending to arbitrary odd dimension the solution
for hard-sphere mixtures [J. L. Lebowitz, Phys.\ Rev.\ \textbf{133}, 895
(1964)]. Explicit evaluations for binary mixtures in five dimensions are
performed. The results are compared with computer simulations and a good
agreement is found.Comment: 16 pages, 8 figures; v2: slight change of notatio
- …
