11,700 research outputs found

    Transverse Instabilities of Coasting Beams with Space Charge

    Full text link
    Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space charge tune shift. This condition specifies a relatively small area of parameters which, however, is the most interesting for practical applications. The Landau damping rate and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of chromatic and octupole tune spreads.Comment: 6 pages, 2 figures, accepted by Phys. Rev. ST - Accel. Beam

    Stable dipole solitons and soliton complexes in the nonlinear Schrodinger equation with periodically modulated nonlinearity

    Full text link
    We develop a general classification of the infinite number of families of solitons and soliton complexes in the one-dimensional Gross-Pitaevskii/nonlinear Schrodinger equation with a nonlinear lattice pseudopotential, i.e., periodically modulated coefficient in front of the cubic term, which takes both positive and negative local values. This model finds direct implementations in atomic Bose-Einstein condensates and nonlinear optics. The most essential finding is the existence of two branches of dipole solitons (DSs), which feature an antisymmetric shape, essentially squeezed into a single cell of the nonlinear lattice. This soliton species was not previously considered in nonlinear lattices. We demonstrate that one branch of the DS family (namely, the one which obeys the Vakhitov-Kolokolov criterion) is stable, while unstable DSs spontaneously transform into stable fundamental solitons (FSs). The results are obtained in numerical and approximate analytical forms, the latter based on the variational approximation. Some stable bound states of FSs are found too.Comment: 12 pages, Chaos, in pres

    On the Fourier transform of the characteristic functions of domains with C1C^1 -smooth boundary

    Full text link
    We consider domains DRnD\subseteq\mathbb R^n with C1C^1 -smooth boundary and study the following question: when the Fourier transform 1D^\hat{1_D} of the characteristic function 1D1_D belongs to Lp(Rn)L^p(\mathbb R^n)?Comment: added two references; added footnotes on pages 6 and 1

    Simulation of Beam-Beam Effects and Tevatron Experience

    Full text link
    Effects of electromagnetic interactions of colliding bunches in the Tevatron had a variety of manifestations in beam dynamics presenting vast opportunities for development of simulation models and tools. In this paper the computer code for simulation of weak-strong beam-beam effects in hadron colliders is described. We report the collider operational experience relevant to beam-beam interactions, explain major effects limiting the collider performance and compare results of observations and measurements with simulations.Comment: 23 pages, 17 figure

    H-theorem in quantum physics

    Full text link
    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.Comment: 8 pages, 4 figure

    Transient Cherenkov radiation from an inhomogeneous string excited by an ultrashort laser pulse at superluminal velocity

    Get PDF
    An optical response of one-dimensional string made of dipoles with a periodically varying density excited by a spot of light moving along the string at the superluminal (sub-luminal) velocity is theoretically studied. The Cherenkov radiation in such system is rather unusual, possessing both transient and resonant character. We show that under certain conditions, in addition to the resonant Cherenkov peak another Doppler-like frequency appears in the radiation spectrum. Both linear (small-signal) and nonlinear regimes as well as different string topologies are considered.Comment: accepted to Phys. Rev.
    corecore