265 research outputs found

    Two-dimensional-modulated, magnetic structure of neodymium metal

    Get PDF

    Magnon Bose condensation in symmetry breaking magnetic field

    Full text link
    Magnon Bose condensation (BC)in the symmetry breaking magnetic field is a result of unusual form of the Zeeman energy, which has terms linear in the spin-wave operators and terms mixing excitations differ in the Wave-vector of the magnetic structure. The following examples are considered: simple easy-plane tetragonal antiferromagnets (AF), frustrated AF familyR2CuO4R_2Cu O_4 where R=Pr,NdR=Pr,Nd etc. and cubic magnets with the Dzyaloshinskii-Moriya interaction (MnSiMn Si etc.). In all cases the BC becomes important when the magnetic field becomes comparable with the spin-wave gap. The theory is illustrated by existing experimental results.Comment: Submitted to J. of Phys. Condens. Matter (Proceedings of International Conference "Highly Frustrated Magnets", Osaka (Japan), August 2006). 8 pages, 5 figure

    Ultrasonic studies of the magnetic phase transition in MnSi

    Full text link
    Measurements of the sound velocities in a single crystal of MnSi were performed in the temperature range 4-150 K. Elastic constants, controlling propagation of longitudinal waves reveal significant softening at a temperature of about 29.6 K and small discontinuities at ∼\sim28.8 K, which corresponds to the magnetic phase transition in MnSi. In contrast the shear elastic moduli do not show any softening at all, reacting only to the small volume deformation caused by the magneto-volume effect. The current ultrasonic study exposes an important fact that the magnetic phase transition in MnSi, occurring at 28.8 K, is just a minor feature of the global transformation marked by the rounded maxima or minima of heat capacity, thermal expansion coefficient, sound velocities and absorption, and the temperature derivative of resistivity.Comment: 4 pages, 4 figure

    Dissociative photoionization of NO across a shape resonance in the XUV range using circularly polarized synchrotron radiation.

    Get PDF
    We report benchmark results for dissociative photoionization (DPI) spectroscopy and dynamics of the NO molecule in the region of the σ* shape resonance in the ionization leading to the NO+(c3Π) ionic state. The experimental study combines well characterized extreme ultraviolet (XUV) circularly polarized synchrotron radiation, delivered at the DESIRS beamline (SOLEIL), with ion-electron coincidence 3D momentum spectroscopy. The measured (N+, e) kinetic energy correlation diagrams reported at four discrete photon energies in the extended 23-33 eV energy range allow for resolving the different active DPI reactions and underline the importance of spectrally resolved studies using synchrotron radiation in the context of time-resolved studies where photoionization is induced by broadband XUV attosecond pulses. In the dominant DPI reaction which leads to the NO+(c3Π) ionic state, photoionization dynamics across the σ* shape resonance are probed by molecular frame photoelectron angular distributions where the parallel and perpendicular transitions are highlighted, as well as the circular dichroism CDAD(θe) in the molecular frame. The latter also constitute benchmark references for molecular polarimetry. The measured dynamical parameters are well described by multichannel Schwinger configuration interaction calculations. Similar results are obtained for the DPI spectroscopy of highly excited NO+ electronic states populated in the explored XUV photon energy range

    Ordered Phases of Itinerant Dzyaloshinsky-Moriya Magnets and Their Electronic Properties

    Full text link
    A field theory appropriate for magnets that display helical order due to the Dzyaloshinsky-Moriya mechanism, a class that includes MnSi and FeGe, is used to derive the phase diagram in a mean-field approximation. The helical phase, the conical phase in an external magnetic field, and recent proposals for the structure of the A-phase and the non-Fermi-liquid region in the paramagnetic phase are discussed. It is shown that the orientation of the helical pitch vector along an external magnetic field within the conical phase occurs via two distinct phase transitions. The Goldstone modes that result from the long-range order in the various phases are determined, and their consequences for electronic properties, in particular the specific heat, the single-particle relaxation time, and the electrical and thermal conductivities, are derived. Various aspects of the ferromagnetic limit, and qualitative differences between the transport properties of helimagnets and ferromagnets, are also discussed.Comment: 22pp, 8 eps fig

    Neospora caninum infection and repeated abortions in humans.

    Get PDF
    To determine whether Neospora caninum, a parasite known to cause repeated abortions and stillbirths in cattle, also causes repeated abortions in humans, we retrospectively examined serum samples of 76 women with a history of abortions for evidence of N. caninum infection. No antibodies to the parasite were detected by enzyme-linked immunosorbent assay, immunofluorescence assay, or Western blot

    Chiral Skyrmionic matter in non-centrosymmetric magnets

    Full text link
    Axisymmetric magnetic strings with a fixed sense of rotation and nanometer sizes (chiral magnetic vortices or Skyrmions) have been predicted to exist in a large group of non-centrosymmetric crystals more than two decades ago. Recently these extraordinary magnetic states have been directly observed in thin layers of cubic helimagnet (Fe,Co)Si. In this report we apply our earlier theoretical findings to review main properties of chiral Skyrmions, to elucidate their physical nature, and to analyse these recent experimental results on magnetic-field-driven evolution of Skyrmions and helicoids in chiral helimagnets.Comment: 13 pages, 7 figures, invited talk - JEMS-2010 ( 23-28 August, Krakow, Poland

    Slow Coarsening in an Ising Chain with Competing Interactions

    Full text link
    We investigate the zero-temperature coarsening dynamics of a chain of Ising spins with a nearest-neighbor ferromagnetic and an nth-neighbor antiferromagnetic interactions. For sufficiently large antiferromagnetic interaction, the ground state consists of nn consecutive up spins followed by n down spins, etc. We show that the asymptotic coarsening into this ground state is governed by a multispecies reactive gas of elementary excitations. The basic elementary excitations are identified and each decays at a different power-law rate in time. The dominant excitations are domains of n+1 spins which diffuse freely and disappear through processes which are effectively governed by (n+1)-particle annihilation. This implies that the ground state is approached slowly with time, as t^{-1/n}.Comment: 7 pages, 2 figures, revtex 2-column format, submitted to J. Phys.
    • …
    corecore