Technical University of Denmark

Magnetic phase transitions of CeSb: Results of structure refinements

Forskningscenter Risø, Roskilde; Muir, G.; Hälg, W.; Lebech, B.; Rainford, B.D.; Vogt, O.

Publication date: 1977

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Fischer, P., Muir, G., Hälg, W., Lebech, B., Rainford, B. D., & Vogt, O. (1977). Magnetic phase transitions of CeSb: Results of structure refinements. (Denmark. Forskningscenter Risoe. Risoe-R; No. 369).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Risø Report No. 369

Magnetic Phase Transitions of CeSb: Results of Structure Refinements

by P. Fischer, G. Meier, W. Hälg, B. Lebech, B. D. Rainford, and O. Vogt

September 1977

Sales distributors: Jul. Gjellerup, Sølvgade 87, DK-1307 Copenhagen K, Denmark Available on exchange from: Risø Library, Risø National Laboratory, DK-4000 Roskilde, Denmark

UDC 546.655: 538.22: 548.78

•

```
September 1977
```

MAGNETIC PHASE TRANSITIONS OF CeSb: RESULTS OF STRUCTURE REFINEMENTS

by

```
P. Fischer<sup>+</sup>, G. Meier<sup>+</sup>, W. Hälg<sup>+</sup>,
B. Lebech<sup>*</sup>, B.D. Rainford<sup>*‡</sup>, and O. Vogt<sup>§</sup>
```

```
<sup>+</sup>Institut für Reaktortechnik ETHZ, c/o E.I.R.,
CH-5303 Würenlingen, Switzerland
<sup>*</sup>Physics Department, Risø National Laboratory,
DK-4000 Roskilde, Denmark
<sup>§</sup>Laboratorium für Festkörperphysik, ETH,
CH-8093 Zürich, Switzerland
<sup>†</sup>Permanent address: Physics Department, Imperial College,
London, U.K.
```

Risø Repro ISBN 87-550-0503-9

.

.

ABSTRACT

The magnetic ordering of the anomalous antiferromagnet CeSb, which has a NaCl crystal structure, was determined in zero and non-zero applied magnetic fields by means of neutron diffraction investigations of single crystals and powder. Below the Néel temperature of (16.1:0.1) K, in zero field, there are six partially disordered magnetic phases of antiphase-domain type (<100> superstructures) with <100> orientation of the magnetic moments. At low temperatures and increasing magnetic fields, the structures transform from antiferromagnetic via ferrimagnetic configurations to a ferromagnetic state, i.e. the magnetic properties are similar to those of Ising spins. At higher temperatures (T>10 K) the existence of antiphase-domain-type superstructures along the tetragonal c axis implies considerable disorder even at high fields, and partially ordered, field-induced states exist even above the Néel temperature in zero field. Detailed results are given (structure factor tables) of the complete structure refinements at various temperatures for magnetic fields applied to the [001] direction.

CONTENTS

Page

1.	Introduction	7
2.	Result of Structure Refinements	7
	2.1. Short Summary of the Experimental Procedures	7
	2.2. Structure Factor Tables	10
3.	Fourier Representation of the Magentic	
	Structures of CeSb	15
	3.1. Zero Field Magnetic Structures	16
	3.2. Non-zero Field Magnetic Structures (\vec{H} [001])	18
4.	Appendix (Tables 4 to 13)	21
5.	References	28

- -

.

5

.

1. INTRODUCTION

The anomalous magnetic properties of CeSb (cf. the reviews published by Cooper (1976a,b)) are rather unique within the large class of rare-earth monopnictides that have a simple NaCl crystal structure, because of the interplay between the strongly anisotropic exchange interactions and the effects of the crystalline electric field, which are of a comparable order of magnitude. Also the associated magnetoelastic effects are of importance for the anomalous magnetic behaviour (Cooper 1976b). One anomaly in CeSb is the experimental fact that the easy axes of magnetization are along the <100> directions, while in sufficiently diluted Ce_{1-x} (Y,La)_xSb the <111> directions are favoured as easy axes. In the diluted compounds, the anisotropic Ce-Ce interaction is decreased and therefore the easy direction is that characteristic of the crystal-field anisotropy alone (Cooper 1976a).

Recently, we summarized and discussed in detail the results obtained from an elastic neutron scattering investigation of single crystals and powder of CeSb in both zero (Fischer et al 1977) and non-zero (Meier et al 1978) applied magnetic fields. The present report is a compilation of the results of the structure refinements carried out in order to derive the phase diagram and determine the corresponding magnetic structures. In section 2 are listed the measured intensities and the structure factor tables. Section 3 gives the Fourier representation of the magnetic structures in both zero and non-zero applied magnetic fields.

2. RESULT OF STRUCTURE REFINEMENTS

2.1. Short Summary of the Experimental Procedures

Several CeSb single crystals and one powder sample were investigated in the present neutron diffraction study. The powdered sample was kindly supplied by Dr. N. Nereson from the University of California, Los Alamos, and was identical to that used by Nereson et al (1972). The single crystals were grown at the laboratory of solid state physics of the "Eidgenössische Technische Hochschule" in Zürich. The investigations of the single crystals were carried out using neutrons of various incident wavelengths. The experimental details are summarized in table 1. Generally, the collimations in front of and behind the sample were defined by the dimensions of the monochromator, sample and detector. Whenever necessary

Sample	No.	Dimensions (m) I,y,I	Orientation (some axis, 1)	Weve- length (Å)	Hono- chromotor	Reactor
	I	3,1,4	{ [00]] [[[[[[[[[[[[[[[[1.71,1.76 1.17	Ge 111 De 002	DR 3/Rise
Single crystal	11	3,2,2.5	[001]	1.71	Ge 111	DR 3/Rise
	111	3.7,3.1,4.8	[001]	{ 1.03 1.05	C* 002	Sachir/Diorit/ Würenlingen
Powder V-container	IV	diameter 10 height 50		2.34	C+ 003	Saphir/ Würenlingen

Table 1. Experimental dotails of the moutron diffraction studies.

*pyrolytic graphite

⁺pyrolytic graphite and filter

the collimation in front of and after the sample was improved by Soller slits. Because of the limited resolution, the magnetic reflections are indexed in the pseudo-cubic cell.

The neutron diffraction measurements indicated that the magnetic structure of CeSb is sinusoidal. Such a structure gives rise to magnetic satellite peaks originating from the nuclear Bragg peaks. In the single crystals investigation these satellites were located in reciprocal space by performing systematic scans (general linear scans (Lebech and Nielsen 1975)) with equidistant steps in reciprocal space. These scans were preferentially parallel to symmetry directions, but other types of scans such as ω -scans (rock-scans) or θ -2 θ scans through selected reciprocal lattice points were also used. In most cases θ -2 θ scans were used to determine integrated intensities. For neutron wavelengths of the order of 1 Å, extinction, which presents no problem in powder measurements, appeared to be of minor importance. Only the most intense nuclear reflections were found to be affected by extinction and were therefore generally omitted from the refinements. Corrections for absorption are negligible and were not taken into account.

<u>Piqure 1.</u> Section of the reciprocal space (pseudo-cubic) of CeSb showing the positions of magnetic satellite peaks (three domains along X, Y and Z) corresponding to a ++-- configuration (type IA). The filled circles indicate the nuclear Bragg reflections.

As illustrated in figure 1, the observed magnetic peaks may be indexed as magnetic satellites $\{\pm q00\}$ of the nuclear Bragg reflections hki, i.e. the magnetic peaks correspond to X, Y and Z domains of magnetic superstructures along the three <100> directions. The domain distribution is not a statistical one; generally, the Z domains were found to be favoured. Also shown in figure 1 are the directions $(\hat{H}_{I} \text{ and } \hat{H}_{II})$ of the applied magnetic fields. In the following we only consider the effects of applied fields parallel to the [001] direction (\hat{H}_{T}) .

2.2. Structure Pactor Tables

In the structure analysis we considered only commensurable magnetic superstructures. The results of the analysis are summarized in tables 2 and 3, which also list the number of Ce^{3+} layers (M) within a magnetic unit cell, the number of chemical cells (M) within a magnetic cell, and the position of the most

<u>Tuble 3</u>. Antiferromonatic structures of Cadb in some applied magnetic field. If in the summar of chantesi colls contained in the segnetic coll along [001] (2-densine), and H is the period of the sugnetic structure, i.e. the number of Co-layers. The segnetic structures are composed by the stacking of blocks of Co³⁺ layers (F₂ and B₂) as described in section 3.2.

14000	Tamperature cange (E)	•	V *	*	•	Co ^{Jo} layer sequence in E charical calls along [001]	Grder (b)
I	15.9-16.1	0.666	2/3	3)	₩_ +_ ,₩ = 0 + ~ 0 +)	67
82	15.3-15.9	0.617	6/13	13	1)	7,0_0_7_0, 7,0_0_7_0 ,	77
821	13.7-15.3	0_576	4/7	7	7	*_0_* _ *_0_* _	81
1 Y	11.0-13.7	0.555	5/9	•	10	*_0_7_7_7_0_	89
v	8.9-11.0	e.545	4/11	11	11	*_ *_*_ *_ *_*_*_*_*_*_	91
VI	2 2.2- 8.9	0.500 :0.002	1/3	3	4	F,F_ (er + +)	100

intense magnetic satellite $Q = L_0/N$. The structures listed in table 2 (zero field) are composed of four simple, stacked blocks $(F_{\pm} \text{ and } D_{\pm})$. These blocks are combinations of layers of Ce atoms in which the Ce³⁺ moments are either completely disordered (paramagnetic layers) or completely ordered (ferromagnetically aligned parallel to [001]). The P_ block consists of two ferromagnetic Ce³⁺ layers that are ferromagnetically coupled to each other. The D₊ block consists of a paramagnetic Ce^{3+} layer sandwiched between two ferromagnetic Ce³⁺ layers that are antiferromagnetically coupled to each other. In the notation used to describe the f.c.c. type IA antiferromagnetic structure (++--), P₊ is described by ++ and D, by +0-. For F and D, the moment directions are reversed (-- and -0+). In table 3 (non-zero field) we use the notation P_{n+} to denote n ferromagnetic layers that are ferromagnetically coupled. + indicates that the moments are aligned parallel to the field and - that the moments are aligned antiparallel to the field. Disordered (paramagnetic) layers of

Ce-atoms with no net moment parallel to the field are denoted by 0.

<u>Table 3</u>. Average megnetic structures of CaBb in applied megnetic fields parallel to [001]. These structures consist of ferromagnetic (+ or -) and paramagnetic (0) layers of Ce³⁺ ions. N is the number of chunical cells contained in the magnetic cell along [001] (I domain), and H is the period of the megnetic structure, i.e. the number of Ce³⁺ layers. σ/σ_p denotes the megnetization (e) relative to the megnetization (σ_p) of a ferromagnetically ordered structure.

Tenperature range (R)	L ₀ /M	Я	n	a/a _F	Ce ³⁺ layer sequence in M/2 chemical cells along [001]	Order (%)
	6/11	11	11	5/11	++00++00+00	45
	1/2	2	4	1/2	++00	50
	4/9	9	•	5/9	+++00++00	56
CeSb	2/5	5	5	3/5	+++00	60
T > 10	6/11	11	11	5/11	5 F11+ and 5(++++)	
	1/2	2	4	1/2	5 FA+ and 5 (++)	
	4/9	9	,	5/9	5 F. and 5 (+++++)	
 	2/5	5	5	3/5	5 F5+ and 5(+++)	
 	4/7	7	7	1/7	****-	100
	2/3	3	3	1/3	**-	100
 T < 10	0	1	1	1	**	100
 CeB1 T < 25	1/2	2	٠	1/2	***-	100

In order to determine the ordered magnetic moments accurately, and to test in detail the magnetic structures of CeSb, sets of nuclear and magnetic integrated intensities (from each type of domain) were measured on CeSb III at 4.4 K (phase VI), 14.1 K (phase III), 16.05 K (phase I) and in the paramagnetic phase at 77 K. To analyze these data a convenient description of the magnetic intensities is obtained by using Fourier components $\vec{E}(\vec{k})$ of the magnetic moment configuration $\{\vec{\mu}\}$ (cf. Lyons et al 1962, van Laar 1968). A detailed account of the Fourier representation of commensurable structures is given in Fischer et al 1977.

Each Fourier term corresponds to a pair of magnetic satellite peaks at $\overline{\tau}_{hkl} \pm \vec{k}_{00q}$ of the nuclear reflection at $\overline{\tau}_{hkl}$. The intensity of each satellite is proportional (for $q_i < 1$) to

$$I(\vec{k}_{j}) = 4A_{\mu}^{2}(\vec{k}_{j}) \{ \frac{1}{2}r_{0}\gamma f(\vec{k}_{j}) \}^{2} \sin^{2}\delta, A_{\mu}(\vec{k}_{j}) \equiv E(\vec{k}_{j}), \quad (1)$$

where r_0 is the classical electron radius, γ is the gyromagnetic ratio of the neutron, and $f(\vec{k})$ is the neutron magnetic form

factor at the scattering vector \vec{k} , and

$$\sin^2 \delta = 1 - \frac{(l \pm q_j)^2}{h^2 + k^2 + (l \pm q_j)^2}$$

For $q_j = 1$, $I(\vec{k}_j)$ should be multiplied by 4. In the case of an incommensurable q_j , $A_{\mu}(\vec{k}_j)$ is equal to μ , where μ is the maximum moment on any Ce³⁺ ion.

The observed and calculated intensities and the results of the refinements of the single crystal data at various fields and temperatures are listed for zero applied field in tables 4 to 7 and for non-zero field parallel to [001] in tables 8 to 12. The good agreement between the observed and calculated intensities is reflected in the low reliability factors (R or $R_{\rm o}$) and implies

<u>Pigure 2.</u> Average of I_{obs}/I_{calc} (table 4) over equivalent nuclear reflections versus scattering vector. The error bars indicate the upper and lower limits of I_{obs}/I_{calc}

negligible extinction (when excluding intense reflections such as 200 and 022) and 1:1 stoichiometry of the sample. The R-factors given in tables 4 to 8 are defined as

$$R = \{ \sum_{j = 0}^{n} |\mathbf{I}_{obs} - \mathbf{I}_{calc}|_{j} \} / [(\mathbf{I}_{obs})_{j} \text{ and} \\ R_{W}^{2} = \{ \sum_{j = 0}^{n} |\mathbf{I}_{obs} - \mathbf{I}_{calc}|_{j} \} / \{ \sum_{j = 0}^{n} |\mathbf{I}_{obs}|_{j}^{2} \} , g_{j} = \frac{1}{\Delta_{j}} \}$$

where Δ_j is the statistical uncertainty in $I_{obs,j}$. Usually, the inclusion of the anisotropy of the form factor f_J in the $M_J = J$ approximation resulted in slightly better agreement between the calculated and the observed intensities than the use of the form factor f_d in the dipolar approximation. Similarly, possible differences between the calculated and the true neutron magnetic form factor were allowed for by determining the Debye-Waller parameter of Ce from both the nuclear and the magnetic intensities. The goodness of the refinements is also illustrated in figures 2 and 3, which show the average over equivalent reflections of I_{obs}/I_{calc} versus scattering vector for the nuclear reflections (table 4) at 4.2 K (figure 2) and the magnetic satellites (tables 5 to 7) at 4.4, 14.1 and 16.05 K (figure 3).

For a powder sample, the intensity relation of equation (1) is modified to

$$I_{m} = 4C^{2} \frac{\left(\frac{1}{2}r_{0}\gamma f(\vec{k})A_{\mu}(\vec{k}_{j})\right)^{2}M}{\sin\theta\sin2\theta} \times \left[1 - \frac{L^{2}}{H^{2}+K^{2}+L^{2}}\right] \times \exp\left[-2B_{Ce}(\sin\theta/\lambda)^{2}\right] (2)$$

with tetragonal multiplicities M as well as H = h, K = k and $L = l \pm q$ referring to the f.c.c. unit cell. The Ce³⁺ neutron magnetic form factor $f(\vec{k})$ was calculated in the dipolar approximation (Lander and Brun 1970).

From least-squares refinement of the integrated intensities of the nuclear peaks at 4.2 K, the scale factor C and the Debye-Waller parameter were obtained. The results are listed in table 13. The low R_n value indicates 1:1 stoichiometry of the powder sample investigated. In the refinement of the magnetic inten-

<u>Piqure 3.</u> Average of I_{obs}/I_{calc} (tables 5 to 7) over equivalent magnetic satellites versus scattering vector. The error bars indicate the upper and lower limits of I_{obs}/I_{calc} . Filled signs indicate that only one reflection was measured.

sities the Debye-Waller parameter of Ce was also refined in order to allow for deviations of $f(\vec{x})$ from the dipolar approximation. These results are also listed in table 13. The good agreement between the observed and the calculated magnetic intensities confirms the proposed model with moments along [001].

3. FOURIER REPRESENTATION OF THE MAGNETIC STRUCTURES OF CeSb

In real space, the Fourier representation of the magnetic moments of commensurable structures is

$$\hat{\mu}_{n}(\vec{r}_{n}) = \sum_{j=0}^{j=m} \vec{E}(\vec{k}_{j})\cos(\vec{k}_{j}\vec{r}_{n}-\rho_{j}) \text{ with}$$

$$\rho_{j} = \arctan(\beta_{j}/\alpha_{j}) - \frac{2j}{M}\pi,$$
(3)

where M is the number of layers of magnetic ions within a magnetic unit cell. In equation (3)

$$\vec{k}_{j} = \frac{2j}{M} \vec{r}_{001} \equiv q_{j} \vec{r}_{001} \vec{e}_{z}$$
with $j = 0, 1, \dots, m$, where $2m = M-1$ for M odd, and $2m = M$ for
M even. $\vec{E}(\vec{k}_{j})$ is given by

$$\vec{E}(\vec{k}_{j}) = 2\hat{e}_{z} \sqrt{\alpha_{j}^{z} + \beta_{j}^{z}} \text{ and } \vec{E}(\vec{k}_{j},) = \hat{e}_{z} \sqrt{\alpha_{j}^{z} + \beta_{j}^{z}}, \text{ for } 2j' = 0 \text{ and } M$$
(M even).

$$\alpha_{j} = \frac{1}{M} \int_{n=1}^{M} \mu_{n}(\vec{r}_{n}) \cos(\vec{k}_{j}\vec{r}_{n} + \frac{2j}{M}\pi) \text{ and}$$

$$\beta_{j} = \frac{1}{M} \int_{n=1}^{M} \mu_{n}(\vec{r}_{n}) \sin(\vec{k}_{j}\vec{r}_{n} + \frac{2j}{M}\pi),$$

where n denotes the ferromagnetic layers of magnetic ions with moments parallel to [001] that are contained in the magnetic unit cell. For the f.c.c. Ce lattice, $\vec{r}_1 = \{0,0,0\}$; $\vec{r}_2 = \{1/2,0, 1/2\}$, etc.

Below we give the Fourier representation of the magnetic structures observed in CeSb (cf. Fischer et al 1977 and Scheid 1968).

15

3.1. Zero Field Magnetic Structures

a) Phase I with moment sequence D_ D_ corresponds to one \vec{k}_j vector giving

$$\vec{\mu}_n = A_{\mu}(\frac{2}{3})\hat{e}_z \cos(\frac{2}{3}\vec{\tau}_{001}\vec{r}_n + \frac{5}{6}\pi)$$
 with $A_{\mu}(\frac{2}{3}) = \frac{2\mu}{\sqrt{3}}$.

b) Phase II with moment sequence $F_{+}D_{-}D_{-}F_{-}D_{-}F_{-}D_{-}F_{-}D_{-}F_{-}D_{-}$ corresponds to six \vec{k}_{j} -vectors giving

$$\begin{split} \vec{\mu}_{n} &= \hat{e}_{z} \{ A_{\mu} \left(\frac{2}{13} \right) \cos \left(\frac{2}{13} \vec{\tau}_{001} \vec{r}_{n} - \frac{5}{26} \pi \right) \\ &+ A_{\mu} \left(\frac{4}{13} \right) \cos \left(\frac{4}{13} \vec{\tau}_{001} \vec{r}_{n} + \frac{3}{26} \pi \right) \\ &+ A_{\mu} \left(\frac{6}{13} \right) \cos \left(\frac{4}{13} \vec{\tau}_{001} \vec{r}_{n} - \frac{15}{26} \pi \right) \\ &+ A_{\mu} \left(\frac{3}{13} \right) \cos \left(\frac{3}{13} \vec{\tau}_{001} \vec{r}_{n} - \frac{7}{26} \pi \right) \\ &+ A_{\mu} \left(\frac{10}{13} \right) \cos \left(\frac{10}{13} \vec{\tau}_{001} \vec{r}_{n} - \frac{25}{26} \pi \right) \\ &+ A_{\mu} \left(\frac{12}{13} \right) \cos \left(\frac{12}{13} \vec{\tau}_{001} \vec{r}_{n} + \frac{9}{26} \pi \right) \} , \end{split}$$
with $A_{\mu} \left(\frac{2}{13} \right) / \mu \sim 0.2016,$
 $A_{\mu} \left(\frac{4}{13} \right) / \mu \sim 0.1692,$
 $A_{\mu} \left(\frac{6}{13} \right) / \mu \sim 0.1725,$
 $A_{\mu} \left(\frac{8}{13} \right) / \mu \sim 0.1051,$
 $A_{\mu} \left(\frac{12}{13} \right) / \mu \sim 0.1051,$
 $A_{\mu} \left(\frac{12}{13} \right) / \mu \sim 0.0648,$

c) Phase III with moment sequence $F_+D_F_F_-F_+D_F_-$ corresponds to three k_j -vectors giving

$$\begin{split} \vec{\mu}_{n} &= \hat{e}_{z} \{ A_{\mu} (\frac{2}{7}) \cos(\frac{2}{7} \vec{\tau}_{001} \vec{r}_{n} - \frac{5}{14} \pi) \\ &+ A_{\mu} (\frac{4}{7}) \cos(\frac{4}{7} \vec{\tau}_{001} \vec{r}_{n} - \frac{3}{14} \pi) \\ &+ A_{\mu} (\frac{6}{7}) \cos(\frac{6}{7} \vec{\tau}_{001} \vec{r}_{n} + \frac{13}{14} \pi) \}, \end{split}$$
with $A_{\mu} (\frac{2}{7}) / \mu \sim 0.3583,$
 $A_{\mu} (\frac{4}{7}) / \mu \sim 1.2518, \text{ and}$
 $A_{\mu} (\frac{6}{7}) / \mu \sim 0.1376. \end{split}$

d) Phase IV with moment sequence $P_+D_-P_-P_+P_-D_+P_+P_-$ corresponds to four \vec{k}_j -vectors giving

$$\begin{split} \vec{\mu}_{n} &= \hat{e}_{z} \{ A_{\mu} \left(\frac{1}{9} \right) \cos \left(\frac{1}{9} \vec{\tau}_{001} \vec{r}_{n} + \frac{1}{6} \pi \right) \\ &+ A_{\mu} \left(\frac{3}{9} \right) \cos \left(\frac{3}{9} \vec{\tau}_{001} \vec{r}_{n} - \frac{1}{2} \pi \right) \\ &+ A_{\mu} \left(\frac{5}{9} \right) \cos \left(\frac{5}{9} \vec{\tau}_{001} \vec{r}_{n} - \frac{1}{6} \pi \right) \\ &+ A_{\mu} \left(\frac{7}{9} \right) \cos \left(\frac{7}{9} \vec{\tau}_{001} \vec{r}_{n} - \frac{5}{6} \pi \right) \}, \end{split}$$
with $A_{\mu} \left(\frac{1}{9} \right) / \mu \sim 0.0809,$
 $A_{\mu} \left(\frac{3}{9} \right) / \mu \sim 0.3849,$
 $A_{\mu} \left(\frac{5}{9} \right) / \mu \sim 1.2603,$

$$A_{\mu}(\frac{7}{9})/\mu \sim 0.1865$$
 .

e) Phase V with moment sequence $F_+F_-F_+D_-F_-F_+F_-F_+D_-F_-$ corresponds to five \vec{k}_j -vectors giving

 $\vec{\mu}_{n} = \hat{\mathbf{e}}_{z} \{ \mathbf{A}_{\mu} (\frac{2}{11}) \cos{(\frac{2}{11} \vec{\tau}_{001} \vec{\mathbf{r}}_{n} - \frac{17}{22} \pi) }$

$$\begin{aligned} +\mathbf{A}_{\mu}(\frac{4}{11})\cos\left(\frac{4}{11}\dot{\tau}_{001}\dot{r}_{n}-\frac{1}{22}\pi\right) \\ +\mathbf{A}_{\mu}(\frac{6}{11})\cos\left(\frac{6}{11}\dot{\tau}_{001}\dot{r}_{n}-\frac{7}{22}\pi\right) \\ +\mathbf{A}_{\mu}(\frac{8}{11})\cos\left(\frac{8}{11}\dot{\tau}_{001}\dot{r}_{n}+\frac{9}{22}\pi\right) \\ +\mathbf{A}_{\mu}(\frac{10}{11})\cos\left(\frac{10}{11}\dot{\tau}_{001}\dot{r}_{n}-\frac{19}{22}\pi\right) \\ +\mathbf{A}_{\mu}(\frac{10}{11})\cos\left(\frac{10}{11}\dot{\tau}_{001}\dot{r}_{n}-\frac{19}{22}\pi\right) \\ \text{with} \qquad \mathbf{A}_{\mu}(\frac{2}{11})/\mu \sim 0.1169, \\ \mathbf{A}_{\mu}(\frac{4}{11})/\mu \sim 0.3981, \\ \mathbf{A}_{\mu}(\frac{6}{11})/\mu \sim 1.2646, \\ \mathbf{A}_{\mu}(\frac{8}{11})/\mu \sim 0.2098, \end{aligned}$$

$$A_{\mu}(\frac{10}{11})/\mu \sim 0.0534.$$

f) Phase VI with moment sequence F_{+} F_{-} corresponds to one $\vec{k}_{,j}$ -vector giving

.

$$\vec{\mu}_{n} = A_{\mu} (\frac{1}{2}) \hat{e}_{z} \cos(\frac{1}{2} \vec{\tau}_{001} \vec{r}_{n} - \frac{\pi}{4}), \text{ with } A_{\mu} (\frac{1}{2}) = \sqrt{2}\mu$$
.

3.2. Non-zero Field Magnetic Structures (H | [001]).

a) The moment sequence ++00++00+00 corresponds to six \vec{k}_j- vectors giving

$$\begin{split} \vec{\mu}_{n} &= \hat{e}_{z} \{ \mathbf{A}_{\mu}(0) + \mathbf{A}_{\mu}(\frac{2}{11}) \cos(\frac{2}{11}\vec{\tau}_{001}\vec{r}_{n} - \frac{5}{11}\pi) \\ &+ \mathbf{A}_{\mu}(\frac{4}{11}) \cos(\frac{4}{11}\vec{\tau}_{001}\vec{r}_{n} + \frac{1}{11}\pi) \\ &+ \mathbf{A}_{\mu}(\frac{6}{11}) \cos(\frac{6}{11}\vec{\tau}_{001}\vec{r}_{n} - \frac{4}{11}\pi) \\ &+ \mathbf{A}_{\mu}(\frac{8}{11}) \cos(\frac{6}{11}\vec{\tau}_{001}\vec{r}_{n} - \frac{4}{11}\pi) \\ &+ \mathbf{A}_{\mu}(\frac{8}{11}) \cos(\frac{8}{11}\vec{\tau}_{001}\vec{r}_{n} + \frac{2}{11}\pi) \\ &+ \mathbf{A}_{\mu}(\frac{10}{11}) \cos(\frac{10}{11}\vec{\tau}_{001}\vec{r}_{n} - \frac{15}{11}\pi) \}, \end{split}$$

with
$$A_{\mu}(0)/\mu \sim 0.9091$$
,
 $A_{\mu}(\frac{2}{11})/\mu \sim 0.1081$,
 $A_{\mu}(\frac{4}{11})/\mu \sim 0.2188$,
 $A_{\mu}(\frac{6}{11})/\mu \sim 0.6388$,
 $A_{\mu}(\frac{8}{11})/\mu \sim 0.1388$,
 $A_{\mu}(\frac{10}{11})/\mu \sim 0.0948$.

b) The moment sequence ++00 corresponds to two \vec{k}_j -vector giving $\vec{\mu}_n = \hat{e}_z \{A_\mu(0) + \cos(\frac{1}{2}\vec{\tau}_{001}\vec{r}_n - \frac{1}{4}\pi)\}$, with $A_\mu(0) = \mu$ and $A_\mu(\frac{1}{2}) = \frac{\sqrt{2}}{2}\mu$.

c) The moment sequence +++00++00 corresponds to five \vec{k}_j -vectors giving

$$\begin{split} \dot{\mu}_{n} &= \hat{e}_{z} \{ \mathbf{A}_{\mu}(0) + \cos(\frac{2}{9}\vec{\tau}_{001}\vec{r}_{n} - \frac{2}{9}\pi) \\ &+ \cos(\frac{4}{9}\vec{\tau}_{001}\vec{r}_{n} - \frac{4}{9}\pi) \\ &+ \cos(\frac{6}{9}\vec{\tau}_{001}\vec{r}_{n} + \frac{3}{9}\pi) \\ &+ \cos(\frac{8}{9}\vec{\tau}_{001}\vec{r}_{n} + \frac{1}{9}\pi) \}, \end{split}$$

with

$$A_{\mu}(0)/\mu \sim 1.1111$$

$$\begin{aligned} \mathbf{A}_{\mu} \left(\frac{2}{9}\right) / \mu &\sim 0.1450 \\ \mathbf{A}_{\mu} \left(\frac{4}{9}\right) / \mu &\sim 0.6399 \\ \mathbf{A}_{\mu} \left(\frac{6}{9}\right) / \mu &\sim 0.2222 \\ \mathbf{A}_{\mu} \left(\frac{8}{9}\right) / \mu &\sim 0.1182. \end{aligned}$$

d) The moment sequence +++00 corresponds to three \vec{k}_j -vectors giving

$$\dot{\vec{\mu}}_{n} = \hat{\vec{e}}_{z} \{ A_{\mu}(0) + \cos(\frac{2}{5}\vec{\tau}_{001}\vec{r}_{n} - \frac{2}{5}\pi) + \cos(\frac{4}{5}\vec{\tau}_{001}\vec{r}_{n} + \frac{1}{5}\pi) \},$$

with $A_{\mu}(0)/\mu \sim 1.2000$

$$A_{\mu}(\frac{2}{5})/\mu \sim 0.6472$$

 $A_{\mu}(\frac{4}{5})/\mu \sim 0.2472.$

e) The moment sequence ++--++-- corresponds to four \vec{k}_j -vectors giving

$$\vec{\mu}_{n} = \hat{e}_{z} \{ A_{\mu}(0) + A_{\mu}(\frac{2}{7}) \cos(\frac{2}{7}\vec{\tau}_{001}\vec{r}_{n} + \frac{2}{7}\pi) + A_{\mu}(\frac{4}{7}) \cos(\frac{4}{7}\vec{\tau}_{001}\vec{r}_{n} - \frac{3}{7}\pi) + A_{\mu}(\frac{6}{7}) \cos(\frac{6}{7}\vec{\tau}_{001}\vec{r}_{n} - \frac{1}{7}\pi) \},$$

with $A_{\mu}(0)/\mu \sim 0.2857$ $A_{\mu}(\frac{2}{7})/\mu \sim 0.4583$ $A_{\mu}(\frac{4}{7})/\mu \sim 1.2840$ $A_{\mu}(\frac{6}{7})/\mu \sim 0.3171.$

f) The moment sequence ++- corresponds to two \vec{k}_j -vector giving $\vec{\mu}_n = \hat{e}_n \{A_n(0) + A_n(\frac{2}{3})\cos(\frac{2}{3}\vec{\tau}_{n,0})\vec{r}_n - \frac{1}{3}\pi)\}$, with

$$A_{\mu}(0) = \frac{2}{3}\mu$$
 and $A_{\mu}(\frac{2}{3}) = \frac{4}{3}\mu$.

<u>Table 4</u>. Calculated (I_{calc}) and observed (I_{obs}: Δ) integrated nuclear intensities at 4.4 K. Scattering lengths: $b_{Ce} = 4.8$ F and $b_{Sb} = 5.6$ F; Debye-Naller parameter B = 0.046(5) λ^2 ; scale factors C(λ) = 75.5(2) and C($\lambda/2$) = 0.00366; lattice constant a = 6.400 Å and neutron wavelength λ = 1.033 Å. The intensity is proportional to C(λ)² exp(-28(sin6/ λ)²). The agreement values are R_n = 1.58 and R_{ny} = 1.88, where

$$\begin{split} \mathbf{R}_{n} &= \{ \begin{array}{l} \sum \limits_{j} |\mathbf{I}_{obs} - \mathbf{I}_{calc}|_{j} \} / \sum \limits_{j} (\mathbf{I}_{obs})_{j} \text{ and } \\ \mathbf{R}_{nw}^{2} &= \{ \begin{array}{l} \sum \limits_{j} |\mathbf{g}_{j} (\mathbf{I}_{obs}^{-1} \mathbf{c}_{alc})_{j}]^{2} \} / (\sum \limits_{j} |\mathbf{g}_{obs}|_{j}^{2}), \ \mathbf{g}_{j} = 1 / \boldsymbol{\Delta}_{j}. \end{split} \end{split}$$

h	k	L	Iobs	24	^I calc	h	×	L	Iobs	±Δ	Icalc
1	1	1	2823	1595	2591		0	0	97079	597	96558
-1	1	1	2787	1596	2591	-8	0	0	99229	603	96558
-1	-1	1	2599	1597	2591	0		0	96659	597	96558
1	-1	1	2818	1598	2591	0	-8	0	96612	599	96558
3	1	1	1233	723	1184		2	0	97712	596	95628
-3	1	1	1416	724	1184	-8	2	0	98020	598	95628
1	3	1	1375	723	1184	-8	-2	0	97382	598	95628
-1	3	1	1424	723	1184		-2	0	97152	594	95628
4	0	0	154032	852	160016	2		0	96812	596	95628
-4	0	0	153697	854	160016	-2		0	97875	598	95628
0	4	0	153827	854	160016	-2		0	98765	601	95628
0	-4	0	155075	855	160016	2	-8	0	97720	598	95628
3	3	1	890	546	905	6	6	0	91534	581	94976
4	2	0	142449	795	144929	-6	6	0	91856	581	94976
-4	2	0	143082	797	144929	-6	-6	0	93089	586	94976
-4	-2	0	144037	799	144929	6	-6	0	91679	581	94976
4	-2	0	143852	799	144929		4	0	95447	589	94459
2	4	0	143559	795	144929		4	0	95644	591	9 44 59
-2	- 4	0	143769	797	144929		-4	0	96157	591	94459
-2	-4	0	143769	799	144929		-4	0	94289	587	94459
2	-4	0	145779	803	144929	4		0	94597	587	94459
5	1	1	729	46 Z	773	-4		Q	94874	587	94459
1	- 5	1	\$73	463	773	-4	-	0	95442	593	94459
4	4	0	120121	697	119302	4	-	0	95244	589	94459
-4		0	121803	677	119302		•	0	96273	596	97936
-4	-4	0	119236	695	119302		•	0	76676	578	97936
		Q	117/00	072	117302			0	97171	600	77730
5	3	1	633	410	67 5		-6	0	97536	578	97936
3	5	1	844	414	675			0	96031	574	97936
	0	0	110404		114124	-•		Q	97111	600	97936
	0	0	110/74	•/•	114124			0	78368	600	77736
0		0	114187	672	114124		-	0	96776	578	97936
			112003		114124	10			79991	378	7736
			117636	920	109914	-10		, v	7///3	600	7/730
			112010	660	107714	Ň	-10		74773	374	7/730
			114371	460	107714		-10		73133	378	7/938
•	-4	, v			107714	- 10	1	, v	100013	608	77017
			111103	640	107714	-10			77373	606	77017
-4		Ň	112201	440	109914	-10	- 1		101470	010	77817
-4			112701	442	100014	10	16	×	773/3	606	77017
-		v.	113403		107714		10	v.	770/3		77017
	- 1	Ň	101013	410	101263		-10	Ň	78133	604	77017
		Ň	102040	416	101243	-4	-10	Ň	77100	604	77919
- •		~	100320	415	101263		-10	v	78438	8 00	32072
•		~	100427	415	101263						
		~	101855	421	101263						
		~	102040	421	101263						
		×	1016.67	617	101263						
4		v	70 TA 4 \		701163						

Т

X-domain	<u>L-domains</u>					<u>Y-domeins</u>						<u>2-domains</u>						
$A_{ij}^{\mathbf{X}} = 1.6$	2(1)	u _B ,	B _{Ce} = 0	.1 (2)	<mark>۸</mark> 2	A <mark>Y</mark> =	1.21	(1)	Har.	» _{Ce} = -	0.2(3) A ²	A ² =	2.09	(1) µ _B ,	» _{ce} •	0.4(1) A ²
for f =	fj					for	t = t	3					for f	= f	t			
R _m = 6.1	1 , R	-	6.61			R	8.21	., R	. -	8.18			۰.	2.14	- , 1 ₃₈₄ =	2.8%		
for f =	£.					for	t - t						for f	- f	4			
R _m = 9.3		n , -	9.28			R _m =	10.4	N,	1. 	- 10.1%			R _m = 2.6%, R _{mv} = 2.9%					
h	k	L	Iobs	:0	Icalc	h	k		L	Iobs	±۵	Icalc	- <u> </u>	k	L	I obs	•1	1 _{calc}
0,504	0	0	0	134	0		0.5	04	0	0	85	0		1	0.496	25986	175	26137
1,496	0	0	0	134	0	0	1.4	96	0	0	85	0	-1	1	0.496	26108	176	26137
0.504	2	<u>o</u>	10914	67	10757	2	0.5	04	0	6392	40	60.89	-1	-1	0.496	25877	177	26137
-0.504	-2		10850	114	10/5/	-2	-0.3	HU 4	0	6273	37	60.89	1	-1	0.476	26588	179	2013/
0.504	-2	ŏ	11028	137	10757	-2	-0.5	04	ŏ	6247	111	60.89	1	1	0.496	9021	111	8791
1.496	2	Ō	6169	55	5637	2	1.4	96	ō	3524	52	3213	5	3	0.496	4934	91	4737
-1,496	2	0	6173	105	5637	-2	1.4	96	0	3380	84	3213	Ś	i	0.496	2951	01	2916
-1.496	-2	0	60 35	103	5637	-2	-1.4	96	0	3674	107	3213	1	5	0.496	2777	83	2916
1.496	-2	0	5978	104	5637	2	-1.4	96	0	3618	92	3213	5	3	0.496	1711	71	1859
2.504	0	0	24.74	92	24.35	0	2.5	504	0		92	0	3	5	0.496	1923	73	1859
-2 504	2		2614		2435		2.3	NU 4	0	1453	74	1407	. 2	0	0.504	18492	152	18319
-2.504	-2	ŏ	2 70 8	74	2435	-2	-2.9	104	ŏ	1476	71	1407	-2	6	0.504	10001	147	18319
2.504	-2	ō	2799	1 7	2435	2	-2.9	604	ŏ	1786		1407	- 4	-2	0.504	18744	145	18319
3,496	0	Ō	0	34	0	ž	3.4	96	Ō	655	59	854	2	2	0.504	10859	86	10685
3.496	2	0	1158	34	1109	4	0.9	604	0	1874	74	2021	-2	2	0.504	10828	121	10685
0.504	4	0	3341	85	3424	4	-0.5	604	0	1976	73	2021	-2	- 2	0.504	10629	119	10685
-0.504		0	3240		3424	4	1.4	96	0	1535	72	1647	4	0	0.504	5352	95	5482
1.476		0	2794	42	2771	4	2.9	604	0	1149	68	1163	0	4	0.504	5252	91	5482
9,504	, in the second	Ň	1844	37	1828	4		04	, v	231		321		2	0.504	3984	87	4123
4.504	2	ŏ	580	30	528	2		170 184	ŏ	/04	41	168		- 1	0.504	2048	76	9123
3.496		ō	1269	36	1247		0.9	504	ŏ	511	56	715			0.504	1000	#1	1687
5,496	Ō	Ō	0	30	0	Ē	-0.5	504	ō	735	65	715	ŏ	6	0.504	1607	71	1687
5,496	2	0	195	23	267	4	4.5	504	0	428	69	480	6	2	0.504	1361	67	1395
0,504	6	0	855	62	1129	6	1.4	196	0	481	76	652	2	6	0.504	1411	68	1395
-0.504	•	0	721	56	1129	6	2.9	504	0	402	71	548	2	0	1.496	11754	131	11679
4,504		~	1000	31	1023	2		504	, O	10246	. 71	95	, o	2	1.496	11602	1 30	11679
2 604	4	ň	742	62	847	-1		194		10303	137	11204	1	- +	1.504	1313/	138	13810
6.504	ŏ	ŏ	0	62	ťó	1	1.0	SOA	i	3501	134	3665	-1	T	1.304	14203	13/	7 381V
6.504	2	ō	ō	31	145	-1	1.	504	ī	3698	91	3665						
0,496	1	1	17848	162	20041	Ĵ	0.4	196	ī	3100	87	3276						
-0.496	1	1	18453	164	20041	3	1.	504	1	2303	80	2422						
1,504	1	1	6504	112	6476													
-1,504	1	1	6429	115	6476													
2,476	, i	1	2120	75	19/8													
3,504	1	1	#45	•1	/3/													

<u>Table 5</u>. Integrated magnetic intensities of CaSb III at 4.4 K. The neutron magnetic form factor f_J is calculated in the $M_J = J$ approximation (Lander and Brun 1970). f_d is the form factor in the dipolar approximation. The total moment $\mu = 2.06(4^\circ) \mu_B$ and amplitude $A_\mu = 2.91(7^\circ) \mu_B$.

.

*Includes the uncertainty in the scale factor C arising from an uncertainty in the nuclear scattering lengths of Δb = :0.1 F.

<u>Table 6</u>. Integrated magnetic intensities of CeSb III at 14.1 K. A scale factor C = 77.1(3) yields $A_{ij}(4/7) =$ 2.54(5) u_{μ} : $A_{\mu}(2/7) = 0.7(1) u_{\mu}$; and $u = 2.03 u_{\mu}$.

X-domains	<u>Y-domaine</u>	<u>1-domains</u>					
$\lambda_{\mu}^{H}(4/7) = 1.49(1) \mu_{B}, B_{CB} = 0.4(1) \lambda^{2}$	$\lambda_{u}^{y}(4/7) = 1.08(1) u_{B}, B_{Ce} = 0.5(2) \lambda^{2}$	$A_{\mu}^{2}(4/7) = 1.75(1) u_{B}, B_{Ce} = 0.2(1) A$					
for $t = t_j$	for $t = t_j$	for $t = t_j$					
R _m = 1.3%, R _{max} = 1.6%	$R_{\rm m} = 3.18, R_{\rm ms} = 3.68$	R _m = 1.30, R _{me} = 1.90					
for t = t _d	for t = t _d	for f = f _d					
$R_{\rm m} = 3.38, R_{\rm max} = 4.58$	$R_{\rm m} = 3.78, R_{\rm max} = 4.68$	R _m = 1.25, R _{me} = 1.85					
$A_{\mu}^{X}(2/7) = 0.29(2) \mu_{B} B_{Ce} = 0(2) A^{2}$	$A_{\mu}^{\gamma}(2/7) = 0.20(2) \ \mu_{B^{2}} \ B_{Ce} = 1(3) \ A^{2}$	$A_{\mu}^{2}(2/7) = 0.56(1) \mu_{B}, B_{Ce} = 0.4(2) A$					
for $f = f_{J}$	for f = f _J	for f = f _j					
R _m = 6.81, R _{ms} = 6.91	R _m = 5.36, R _{me} = 5.36	R _m = 3,76, R _{ma} = 4.25					
for f = f _d	for f = f _d	for f = f					
R _m = 6.9%, R _{mat} = 7.0%	R _m = 5.19, R _{may} = 4.98	R _m = 4,5%, R _{ma} = 4.9%					
h k t lobs ²⁴ Icalc	h k ^{t J} obs ^{26 J} càlc	h k f Ichs ^{1A} Icalc					
1.428 0 0 0 40 0 0.572 2 0 9007 109 9137	2 0.572 0 4739 92 4751 2 -0.572 0 4848 89 4751	1 1 0.420 19661 147 19749 -1 1 0.420 19783 147 19749					
-0,572 2 0 9160 113 9137 1,420 2 0 5253 00 5176	2 1,428 0 2598 71 2688 2 2,572 0 999 50 1019	3 1 0.420 4407 91 4616 -3 1 0.428 4729 92 4616					
2,572 2 0 2072 61 1969 3,428 2 0 943 49 982	2 3,420 0 471 45 507 4 0,572 0 1366 56 1466						
0,572 4 0 2077 73 2045 -0,572 4 0 2024 71 2045	4 -0,572 0 1554 57 1466 4 1,428 0 1291 57 1212	3 3 0.420 3541 72 3615 -3 3 0.420 3690 79 3615					
1.428 4 0 2347 60 2354 2.572 4 0 1507 50 1538	4 2.572 0 765 49 789 2 4.572 0 248 49 210	5 1 8,428 2128 61 2259 5 1 8,428 2128 61 2259					
	2 0,207 0 169 16 179	1 5 0,420 2304 63 2259 -1 5 0,420 2304 63 2259					
0.207 2 0 421 19 301		5 3 6.426 1449 55 1461					
1,713 2 0 143 15 152		3 5 0,420 1445 50 1463					
		2 0 0,207 1463 25 1449					
		2 2 8,287 775 20 826					
		• • • • • • • • • • • • • • • • • • •					
		e z 0,207 326 17 314 2 4 0,207 310 16 314					
		4 4 8,387 173 20 156 6 8 8,287 135 17 127					

$\frac{3 - 4 \cos 2 \sin 2}{1 - 4 \cos 2 \sin 2}$ for f = 1 for f = 1 for f = 1 for f = 3.20 for f = 4.50	2 7 (2) 5 9 - 4 6 9 - 4	*••	8 _{C8} - 4.79 5.69	0.3(a) ≜ ²	111 47 - 547 64 547 64 547 64	Example: $A_{\mu}^{T} = 0.95(2) \ u_{B}, \ u_{CB} = 0.4(3) \ A^{2}$ for $f = f_{3}$ $a_{B} = 0.00, \ u_{BB} = 0.50$ for $f = f_{4}$ $u_{B} = 0.70, \ u_{BB} = 5.00$						$\frac{2-2nnoise}{a_{p}^{2} + 1.22(1)} a_{p}^{2}, B_{Cp} = 0.4(1) A^{2}$ No. $E = E_{3}$ $B_{p} = 2.20, B_{pp} = 2.06$ for $E = E_{4}$ $B_{p} = 2.10, B_{pp} = 2.06$				
•	k	ŧ	I.	28	Ienic	•	k	Ł	2	38	Imle	•	k	L	1	28	Icale
1.333 0.447 -0.467 1.333 2.457 3.333 -0.447 4.667	• 2 2 2 2 4 2		136 5300 5300 3670 1115 600 1776 265	348771Q12	6 5435 5426 3427 1130 644 1742 242	2 2 2 2 2 4 4 4 4 4 4 4	0.667 -0.667 1.333 2.667 0.667 1.333 2.667		3057 3536 2306 036 1166 1600 1030 579	7777111787	3622 3632 2752 7722 11.36 971 391	1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333 0.333	9954 9805 3137 3800 3000 1730 1611 1141 1046 915 751 645 645 670 6752	114 113 60 76 76 57 56 59 52 52 52 52 52 52 54 54 60 140	9019 3169 3169 3160 3160 1005 1005 1009 1009 1009 652 652 652 652 652 652 6101

<u>Tuble</u> 7. Integrated angestic intensition of Cudb III at 16.05 K. A much factor C = 77.2(3) yields $A_{\mu} = 1.94(5) =_{p}$ and $\mu = 1.68(4) =_{p}$.

<u>Toble 8</u>. The observed, corrected, integrated intensities of Cubb III at 4.2 K for increasing and decreasing magnetic fields \hat{B} applied parallel to (0C⁻¹. The standard deviations are given in parentheses. v_1 and v_2 are the ordered memory decived from the most intense satellites (q = 0) and from 111, respectively. $v = \frac{1}{2}$ ($v_1 + v_2$). For H = 1.5 T and v = 1.0 v_8 we calculate $I_{calc}(1/7) \sim 2I_{cab}(1/7)$.

	9	Chever	ad intensiti	iao S _{aba}	P1	•	1. Salas	¥2	5
(1)	(r.l.u.)	02g	424	240	(1)	(r.1.	.) 111	(u_)	(19)
	1/2	32221 (122)	0454(70)	5995 (68)	2.66		3291 (34)	•	1.1
0.52	1/2	26579 (109)	7995(65)	8444 (48)	2.02	ė	3312(40)	•	2.0
1.04	1/2	26836(110)	7812(64)	8171 (6A)	2.62	é	1219(19)	ė	2.0
	(1/2		778(31)	116(26)	6.12	•		-	
	1	33105/1381					4837/433	1 64	
						•	*******		
			•		- 15		105044631		
X-17	4/3	44 / 44 (1 / 6 /			2.13			4.41	2.1
2.50	2/3	40652 (117)	•		2.14	•	10790(62)	2.07	2.1
],00	2/3	40701(74)	•		2.15		11040(61)	2.10	2.1
).50	2/)	41005(104)		•	2.16		11034 (85)	2.10	2.1
4.00					-	•	58696(295)	2.84	2.0
4.22					-	Ó	67769 (102)	2.02	2.0
2.90	2/3	41247(105)	6	•	2.10	•	11445 (87)	2.16	2.2
2.05	2/3	41 304 (105)	é		2.16		11114(86)	2.10	2.1
1 44	4/7	16219(162)		•	2 13		4647 (58)	2 01	
	1/2	11012/1601	0067/071	6318/781	5 16		3305(51)		
	174	JA7JA1897)	7994(77)	29731161	4,14	•			2.1

M	q	Observ	ed intensi	ties I _{obs}	۳1	9	Iobs	¥2	ų
(T)	(r.l.u.)	02 g	920	290	(µ_)	(r.l.u.)	111	(u_) (u_)	(µ_)
0	$\frac{4/11}{6/11}$	4518(62) 20780(98)	5643(64)	8214 (72)	2.07	0	2670(46)	0	2.1
0.52	4/11 6/11	5309(66) 21136(98)	5668(63)	8081 (70)	2.08	0	2775(48)	0	2.1
1.00	4/11 6/11	4494 (62) 20018 (97)	5076(71)	8040 (68)	2.02	0	2766(46)	0	2.0
1.50	4/11 6/11	4278(61) 17680(92)	5784(63)	9288 (74)	2.01	0	2777 (47)	0	2.0
2.25	2/3	38427(124)	0	0	2.11	0	9357(64)	1.98	2.1
2.50	2/3	30105(125)	0	0	2.10	0	9178(64)	1.95	2.0
2.75	4/9	10277(75)	0	0	2.21	0	20770(82)	1.96	2.1
3.00	4/9	10083(104)	0	0	2.18	0	20370(116)	1.93	2.1
3.50	2/5 4/5	9013(73) 725(54)	0	0	2.11	0	22862(122)	1.92	2.0
4.00	2/5	9771(101) 614(54)	0	0	2.11	0	23465(120)	2.03	2.1
4.50	2/5	8838(100) 617(48)	0	0	2.00	0	24879(125)	2.00	2.0
5.00	.,.	,,				0	54808(173)	1.84	1.8
3.90	2/5	10125(104) 721(53)	0	0	2.14	0	23471(125)	1.93	2.0
2.90	4/9	9955 (105)	0	0	2.16	0	20271 (80)	1.93	2.1
2.50	2/3	30257 (110)	Ö	0	1.87	Ō	7808(78)	1.74	1.8
1.00	4/11 6/11	794(73) 5619(96)	5356(83)	18362 (126)	1.91	0	2929(75)	0	1.9
0	6/11	6258(91)	5218(84)	17291 (124)	1.89	0	2421(69)	0	1.9

<u>Table 9</u>. The observed, corrected, integrated intensities of CeSb III at 10.9 K for increasing and decreasing magnetic fields applied parallel to [001] (cf. table 3). Using the values of u determined from the experiment, we find $I_{calc}(4/11) \sim 0.6I_{obe}(4/11)$ for H < 1.5 T and $I_{calc}(4/5) \sim 2I_{obe}(4/5)$ for 3.5 T < H < 4.5 T.

<u>Table 10</u>. The observed, corrected, integrated intensities of CeSb III at 16.1 K for increasing and decreasing magnetic fields applied parallel to [001] (cf. table 3). Using the values of μ determined from the experiment, we find $I_{calc}(4/11) \sim 0.4I_{obs}(4/11)$ and $I_{calc}(8/11) \sim 0.2I_{obs}(8/11)$ for H < 1.5 T (H increasing), $I_{calc}(6/9) \sim 0.8I_{obs}(6/9)$ for H = 4.79 T and $I_{calc}(q) \sim I_{obs}(q)$ for q = 2/11, 4/11 and 8/11 for H = 1.4 T (H decreasing).

И (Т)	q (r.\.u.)	Observ 02g	ed intensities g20	1 _{obs} 2q0	μ ₁ (μ _μ) (1	g r.1.u.)	I obs	2 (سع)	ע (ע _ו)
0	2/3 (4/11	6133(94) 2382(78)	2170 (72)	3440 (79)	1.27	0	2432(61)	0	1,3
1.00	6/11 0/11	7613(102) 1597(80)	0	0	1.01	0	7863(84)	1,20	1.6
1.50	{4/11 6/11	2716(71) 7708(69)	0	0	1.82	0	9126(89)	1.36	1.6
2.00	1/2	9112(103)	0	0	1.77	0	11342(88)	1,44	1.6
2,50	1/2	8773(99)	0	0	1.74	0	12127(94)	1.50	1,6
3.00	1/2	9255(100)	0	0	1.79	0	13985(100)	1,64	1,7
3.50	1/2	9030(99)	0	0	1.77	0	14997(102)	1,70	1.7
3,75	1/2	8686(96)	0	0	1.73	0	15340(100)	1.72	1.7
4.50	.4/9	7355(93)	0	0	1.75	0	17135(104)	1.66	1.7
4.79	{4/9 {6/9	7452(88) 1176(83)	0	0	1,76	n	19225(107)	1.71	1.7
4.00	1/2	8707(147)	0	0	1.73	0	16172(164)	1,78	1,8
3.00	1/2	11425(166)	0	0	1,99	0	14010(151)	1,63	1,8
2,00	$\frac{1/2}{2/11}$	11789(168) 277(59)	0	0	2.02	0	12362(144)	1.51	1,8
1,40	6/11	1155(73) 7979(149)	0	0	1,85	0	9852(130)	1,44	1.7
_	(0/11	218(52)							
0,80	6/11	9559(155)	0	0	2.02	0	9711(127)	1,37	1.7
0	2/3	9123(150)	2652(97)	4154 (113)	1,40	0	2505(74)	0	1.5

		Satelli	te intensitie	•	Perromagnetic intensities							
Þ	k	L	I _{obs}	I calc	h	k	1	Iobs	I calc			
1 1 3 1 5 2 0 2 0	1 3 5 1 0 2 2 4	0.333 0.333 0.333 0.333 0.333 0.667 0.667 0.667 0.667	2001 (5) 665 (3) 336 (3) 195 (2) 208 (2) 960 (3) 1259 (4) 764 (4) 376 (2)	1877 605 324 199 199 1177 1177 704 366	1 -1 -1 1 1 3 3 1	1 -1 -1 3 1 5	1 1 1 1 1 1 1	330 (4) 343 (4) 240 (4) 287 (4) 137 (4) 94 (4) 95 (3) 53 (4)	296 296 296 296 132 172 79 54			
24424	42466	0.667 ^.667 0.667 0.667 0.667	205 (2) 225 (2) 165 (2) 87 (2) 62 (2)	277 277 139 95 56								

<u>Table 11</u>. The observed (I_{obs}) and calculated (I_{calc}) magnetic intensities in CeSb III at 4.2 K and at H = 2.50 T applied parallel to [001]. From the satellite intensities, we find $u_1 = 1.9(2) u_B$ with R = 9.6% and $R_{gw} = 11.5\%$. From the ferromagnetic intensities, we find $u_2 = 1.8(2) u_B$ with $R_f = 13.0\%$ and $R_{fw} = 14.5\%$.

<u>Table 12.</u> The observed (I_{abs}) and calculated (I_{calc}) magnetic intensities in CoSb III at 4.2 K and at H = 4.02 T applied parallel to [001]. From these intensities we find $u_2 = 1.8(2) u_B$ with $R_g = 10.86$ and $R_{gw} = 12.66$.

		Perromagnetic intensities			
h k	£	I _{obe}	¹ calc		
1 1	1	2819(6)	2546		
1 1	1	2846 (6)	2546		
	÷	2076(5)	2546		
i -i	1	2521(0)	2546		
, i	1	1145(5)	1109		
1 3	1	1248(5)	1109		
13	1	1218(5)	1109		
3 1	1	867 (5)	1109		
3 3	1	716(4)	654		
1 5	1	421 (4)	435		
ίŝ.	ī	A12 (A)	435		
i i	ī	124 (3)	164		

<u>Table 13.</u> The observed and calculated integrated nuclear and magnetic intensities of CeSb powder at 4.2 K. The scale factor C = 13.9(1).

<u>Nyclear intensities</u> $B = 0.4(1) A^2$

R_n = 2.0%, R_{nw} = 1.9%

.

Magnetic intensities

 $B_{Cp} = 0.8(3) \ A^2$ $A_{\mu}(6/11) = 2.74(6) \ \mu_{B}, \ \mu = 2.17(5) \ \mu_{B}$ for $f = f_{d}$ $R_{m} = 5.76, \ R_{m}, = 4.06$

h	k	1	I _{che}	٤t	1 _{calc}
1	1	1	756	116	822
2	2	0	83482	364	84550
2	2	2	39882	284	40753
3	3	1	0	226	565 94757

p.	k	1	Iobs	28	Icalc	
0	•	0.55	0	270	0	
0 1	0 1	1.45	18984	292	10919	18919
2 1	0 1	0.55	12828	335	9131	13474
2	•	1.45	4594	211	4255	
0	0	2.55	0	211	0	
1 2	1 2	2.45	5034	455	1161 4272	5433
2 3 2	2 1 0	$\left\{\begin{array}{c} 1.45\\ 0.45\\ 2.55\end{array}\right\}$	11169	241	2739 6697 1253	10689
0	0	3.45	0	355	0	
3	1	1.55	3641	355	4274	
2	2 1	2.55 3.55	1782	197	1195 294	1489
2 3 4	0 1 0	3.45 2.45 0.55	4276	307	485 2392 1835	4712
4	0 3	1.45	2795	196	1459 1622	30 81
2 4 3	2 2 3	3.45 0.55 1.55	51 79	499	599 2879 1283	4761
0	0	4.55	٥	477	0	

•

.

- 5. **REFERENCES**
- COOPER, B.R. (1976a). Lattice effects and the magnetic behaviour of rare earth compounds. In: Magnetism in Metals and Metallic Compounds. Edited by J.T. Lopuszanski, A. Pekalski, and J. Przystawa (Plenum, New York) 225-263.
- COOPER, B.R. (1976b). Anisotropic behaviour and complex colinear magnetic structures of cerium and actinide intermetallics. To appear in the Proceedings of the 2nd International Conference on the Electronic Structure of the Actinides, Wroclaw, Poland, September 1976.
- FISCHER, P., LEBECH, B., MEIER, G., RAINFORD, B.D., and VOGT, O. (1977). Magnetic phase transitions of CeSb:I Zero applied magnetic field. J. Phys. C. Solid State Phys. (in print).
- LANDER, G.H. and BRUN, T.O. (1970). Calculation of meutron magnetic form factors for rare-earth ions. J. Chem. Phys. <u>53</u>, 1387-1391.
- LEBECH, B. and NIELSEN, M. (1975). Intensity and resolution of a general scan in reciprocal space. In: New Methods and Techniques in Neutron Diffraction. Proceedings of the Neutron Diffraction Conference. Petten, August 5-6, 1975 (Reactor Centrum Netherland) (RCN-234) 466-486.
- LYONS, D.H., KAPLAN, T.A., DWIGHT, K., and MENYUK, N. (1962). Classical theory of the ground spin-state in cubic spinels. Phys. Rev. 126, 540-555.
- MEIER, G., PISCHER, P., HÄLG, W., LEBECH, B., RAINFORD, B.D., and VOGT, O. (1978). Magnetic phase transitions of CeSb:II Effects of applied magnetic fields. Accepted for publication in J. Phys. C. Solid State Phys.
- NERESON, N. and STRUEBING, V. (1972). Neutron diffraction studies of DySb, NdSb, and CeSb. AIP Conference Proceedings 5, 1385-1389.
- SCHEID, F.J. (1968. Schaum's outline of theory and problems of numerical analysis. Chapter 24 (McGraw-Hill, New York).
- VAN LAAR, B. (1968). Determination of magnetic structure. RCN-92, 145 pp.

28

ISBN 87-550-0503-9