10 research outputs found

    CHARACTERIZATION OF COMPRESSIVE BEHAVIOR OF DEVELOPING HUMAN TALUS

    Get PDF
    Mechanical characterization of human cartilage anlagen is required in order to effectively model congenital musculoskeletal deformities. Such modeling can effectively explore the effect of treatment procedures and potentially suggest enhanced treatment methods. We therefore determined the stress relaxation behavior of cartilage plugs obtained from third-trimester still-born fetuses in unconfined and confined compression geometries. The material parameters determined were the aggregate modulus adult articular cartilage, stiffness was an order of magnitude lower than the values reported in the literature, inferring the relative softness of the tissue; and the permeability was an order of magnitude higher indicating relative ease of flow in the tissue. Poisson's ratio also was close to the higher end of the range found in previous studies. Such material is expected to deform and relax to larger extents

    Validation of a Russian Language Oswestry Disability Index Questionnaire.

    No full text
    Study Design Retrospective reliability and validity study. Objective To validate a recently translated Russian language version of the Oswestry Disability Index (R-ODI) using standardized methods detailed from previous validations in other languages. Methods We included all subjects who were seen in our spine surgery clinic, over the age of 18, and fluent in the Russian language. R-ODI was translated by six bilingual people and combined into a consensus version. R-ODI and visual analog scale (VAS) questionnaires for leg and back pain were distributed to subjects during both their initial and follow-up visits. Test validity, stability, and internal consistency were measured using standardized psychometric methods. Results Ninety-seven subjects participated in the study. No change in the meaning of the questions on R-ODI was noted with translation from English to Russian. There was a significant positive correlation between R-ODI and VAS scores for both the leg and back during both the initial and follow-up visits (p < 0.01 for all). The instrument was shown to have high internal consistency (Cronbach α = 0.82) and moderate test-retest stability (interclass correlation coefficient = 0.70). Conclusions The R-ODI is both valid and reliable for use among the Russian-speaking population in the United States

    Gait-simulating fatigue loading analysis and sagittal alignment failure of spinal pelvic reconstruction after total sacrectomy: comparison of 3 techniques

    No full text
    Object Reconstruction after total sacrectomy is a critical component of malignant sacral tumor resection, permitting early mobilization and maintenance of spinal pelvic alignment. However, implant loosening, graft migration, and instrumentation breakage remain major problems. Traditional techniques have used interiliac femoral allograft, but more modern methods have used fibular or cage struts from the ilium to the L-5 endplate or sacral body replacement with transiliac bars anchored to cages to the L-5 endplate. This study compares the biomechanical stability under gait-simulating fatigue loading of the 3 current methods. Methods Total sacrectomy was performed and reconstruction was completed using 3 different constructs in conjunction with posterior spinal screw rod instrumentation from L-3 to pelvis: interiliac femur strut allograft (FSA); L5–iliac cage struts (CSs); and S-1 body replacement expandable cage (EC). Intact lumbar specimens (L3–sacrum) were tested for flexion-extension range of motion (FE-ROM), axial rotation ROM (AX-ROM), and lateral bending ROM (LB-ROM). Each instrumented specimen was compared with its matched intact specimen to generate an ROM ratio. Fatigue testing in compression and flexion was performed using a custom-designed long fusion gait model. Results Compared with intact specimen, the FSA FE-ROM ratio was 1.22 ± 0.60, the CS FE-ROM ratio was significantly lower (0.37 ± 0.12, p < 0.001), and EC was lower still (0.29 ± 0.14, p < 0.001; values are expressed as the mean ± SD). The difference between CS and EC in FE-ROM ratio was not significant (p = 0.83). There were no differences in AX-ROM or LB-ROM ratios (p = 0.77 and 0.44, respectively). No failures were noted on fatigue testing of any EC construct (250,000 cycles). This was significantly improved compared with FSA (856 cycles, p < 0.001) and CS (794 cycles, p < 0.001). Conclusions The CS and EC appear to be significantly more stable constructs compared with FSA with FE-ROM. The 3 constructs appear to be equal with AX-ROM and LB-ROM. Most importantly, EC appears to be significantly more resistant to fatigue compared with FSA and CS. Reconstruction of the load transfer mechanism to the pelvis via the L-5 endplate appears to be important in maintenance of alignment after total sacrectomy reconstruction

    A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates (Macaca mulatta).

    Get PDF
    The development of a non-human primate (NHP) model of spinal cord injury (SCI) based on mechanical and computational modeling is described. We scaled up from a rodent model to a larger primate model using a highly controllable, friction-free, electronically-driven actuator to generate unilateral C6-C7 spinal cord injuries. Graded contusion lesions with varying degrees of functional recovery, depending upon pre-set impact parameters, were produced in nine NHPs. Protocols and pre-operative magnetic resonance imaging (MRI) were used to optimize the predictability of outcomes by matching impact protocols to the size of each animal's spinal canal, cord, and cerebrospinal fluid space. Post-operative MRI confirmed lesion placement and provided information on lesion volume and spread for comparison with histological measures. We evaluated the relationships between impact parameters, lesion measures, and behavioral outcomes, and confirmed that these relationships were consistent with our previous studies in the rat. In addition to providing multiple univariate outcome measures, we also developed an integrated outcome metric describing the multivariate cervical SCI syndrome. Impacts at the higher ranges of peak force produced highly lateralized and enduring deficits in multiple measures of forelimb and hand function, while lower energy impacts produced early weakness followed by substantial recovery but enduring deficits in fine digital control (e.g., pincer grasp). This model provides a clinically relevant system in which to evaluate the safety and, potentially, the efficacy of candidate translational therapies

    A Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates ( Macaca mulatta

    No full text
    The development of a non-human primate (NHP) model of spinal cord injury (SCI) based on mechanical and computational modeling is described. We scaled up from a rodent model to a larger primate model using a highly controllable, friction-free, electronically-driven actuator to generate unilateral C6-C7 spinal cord injuries. Graded contusion lesions with varying degrees of functional recovery, depending upon pre-set impact parameters, were produced in nine NHPs. Protocols and pre-operative magnetic resonance imaging (MRI) were used to optimize the predictability of outcomes by matching impact protocols to the size of each animal's spinal canal, cord, and cerebrospinal fluid space. Post-operative MRI confirmed lesion placement and provided information on lesion volume and spread for comparison with histological measures. We evaluated the relationships between impact parameters, lesion measures, and behavioral outcomes, and confirmed that these relationships were consistent with our previous studies in the rat. In addition to providing multiple univariate outcome measures, we also developed an integrated outcome metric describing the multivariate cervical SCI syndrome. Impacts at the higher ranges of peak force produced highly lateralized and enduring deficits in multiple measures of forelimb and hand function, while lower energy impacts produced early weakness followed by substantial recovery but enduring deficits in fine digital control (e.g., pincer grasp). This model provides a clinically relevant system in which to evaluate the safety and, potentially, the efficacy of candidate translational therapies

    Mechanical Properties of Human Fetal Talus

    No full text
    Mechanical characterization of human cartilage anlagen is required to effectively model congenital musculoskeletal deformities. Such modeling can effectively explore the effect of treatment procedures and potentially suggest enhanced treatment methods. Using serial MRI, we have noted shape changes of the cartilaginous hindfoot anlagen in patients with clubfoot, suggesting they are soft and deformable. We therefore determined the stress relaxation behavior of cartilage plugs obtained from third-trimester stillborn fetuses in unconfined and confined compression geometries. The material parameters determined were the aggregate modulus HA = 0.15 ± 0.07 MPa, Poisson’s ratio ν = 0.4 ± 0.06, Young’s modulus Es = 0.06 ± 0.03 MPa, and permeability coefficients k0 = 2.01 ± 0.8 × 10−14 m4 N−1 s−1 and M = 4.6 ± 1.0. As compared with adult articular cartilage, stiffness was an order of magnitude lower than the values reported in the literature, suggesting the relative softness of the tissue, and the permeability was an order of magnitude higher, indicating relative ease of flow in the tissue. Poisson’s ratio also was close to the higher end of the range reported in previous studies. Such material is expected to deform and relax to larger extents. These findings are consistent with the deformability of the cartilage anlagen during manipulation and casting for treatment of clubfoot
    corecore