28 research outputs found

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    Seismic imaging in Long Valley, California, by surface and borehole techniques: An investigation of active tectonics

    Get PDF
    The search for silicic magma in the upper crust is converging on the Long Valley Caldera of eastern California, where several lines of geophysical evidence show that an active magma chamber exists at mid‐to lower‐crustal depths. There are also other strong indications that magma may be present at depths no greater than about 5 km below the surface. In this paper, we review the history of the search for magma at Long Valley. We also present the preliminary results from a coordinated suite of seismic experiments, conducted by a consortium of institutions in the summer and fall of 1984, that were designed to refine our knowledge of the upper extent of the magma chamber. Major funding for the experiments was provided by the Geothermal Research Program of the U.S. Geological Survey (USGS) and by the Magma Energy Technology Program of the U.S. Department of Energy (DOE), a program to develop the technology necessary to extract energy directly from crustal magma. Additional funding came from DOE's Office of Basic Energy Sciences and the National Science Foundation (NSF). Also, because extensive use was made of a 0.9‐km‐deep well lent to us by Santa Fe Geothermal, Inc., the project was conducted partly under the auspices of the Continental Scientific Drilling Program (CSDP). As an integrated seismic study of the crust within the caldera that involved the close cooperation of a large number of institutions, the project was moreover viewed as a prototype for future scientific experiments to be conducted under the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL). The experiment thus represented a unique blend of CSDP and PASSCAL methods, and achieved goals consistent with both programs

    Integrating Ion Mobility Mass Spectrometry with Molecular Modelling to Determine the Architecture of Multiprotein Complexes

    Get PDF
    Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (ÎČ2), the Îł complex (Îł3ÎŽÎŽâ€Č), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    External validation of a subset of upregulated genes in cohort 2 that validated in cohort 1

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "An integrative model for recurrence in ovarian cancer"</p><p>http://www.molecular-cancer.com/content/7/1/8</p><p>Molecular Cancer 2008;7():8-8.</p><p>Published online 22 Jan 2008</p><p>PMCID:PMC2248209.</p><p></p> Bars indicate the relative overexpression of target genes in recurrent vs primary tumors. IL1R2 and ZNF218 gave the best distinction between recurrent and primary tumors with greater than twofold changes

    Gene families involved in the molecular regulation of recurrence in ovarian cancer

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "An integrative model for recurrence in ovarian cancer"</p><p>http://www.molecular-cancer.com/content/7/1/8</p><p>Molecular Cancer 2008;7():8-8.</p><p>Published online 22 Jan 2008</p><p>PMCID:PMC2248209.</p><p></p> Some of the upregulated genes in recurrent compared to primary ovarian carcinomas that we validated in cohort 2 belong in the same gene families with some of the upregulated genes validated in cohort 1. Upregulation of tight junction proteins and EGFR ligands, development of a cytokine response via interleukin receptors and intracellular signaling via calcium binding S100 proteins seem to contribute to the "recurrent" signature and possibly have a role in drug resistance
    corecore