5,550 research outputs found

    Tetrahedral and Triangular Deformations of Z=NZ=N Nuclei in Mass Region A6080A \sim 60-80

    Get PDF
    We study static non-axial octupole deformations in proton-rich Z=NZ=N nuclei, 64^{64}Ge, 68^{68}Se, 72^{72}Kr, 76^{76}Sr, 80^{80}Zr and 84^{84}Mo, by using the Skyrme Hartree-Fock plus BCS calculation with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in 68^{68}Se is extremely soft for the Y33Y_{33} triangular deformation, and that in 80^{80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y32Y_{32} tetrahedral deformation.Comment: 8 pages, 4 Postscript figures, REVTE

    Real, virtual, and other personas in an online collaborative environment

    Get PDF
    This presentation reports on a study of an unusual online course, which incorporates collaboration across campuses in teaching about evaluation of information technologies. Issues raised by new information technologies are major foci within the course, and also entry points for our study of its implementation.published or submitted for publicationis peer reviewe

    Emergent Chiral Symmetry: Parity and Time Reversal Doubles

    Get PDF
    There are numerous examples of approximately degenerate states of opposite parity in molecular physics. Theory indicates that these doubles can occur in molecules that are reflection-asymmetric. Such parity doubles occur in nuclear physics as well, among nuclei with odd A \sim 219-229. We have also suggested elsewhere that such doubles occur in particle physics for baryons made up of `cbu' and `cbd' quarks. In this article, we discuss the theoretical foundations of these doubles in detail, demonstrating their emergence as a surprisingly subtle consequence of the Born-Oppenheimer approximation, and emphasizing their bundle-theoretic and topological underpinnings. Starting with certain ``low energy'' effective theories in which classical symmetries like parity and time reversal are anomalously broken on quantization, we show how these symmetries can be restored by judicious inclusion of ``high-energy'' degrees of freedom. This mechanism of restoring the symmetry naturally leads to the aforementioned doublet structure. A novel by-product of this mechanism is the emergence of an approximate symmetry (corresponding to the approximate degeneracy of the doubles) at low energies which is not evident in the full Hamiltonian. We also discuss the implications of this mechanism for Skyrmion physics, monopoles, anomalies and quantum gravity.Comment: 32 pages, latex. minor changes in presentation and reference

    Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation

    Get PDF
    We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex

    A five-year model to assess the early cost-effectiveness of new diagnostic tests in the early diagnosis of rheumatoid arthritis

    Get PDF
    __Background:__ There is a lack of information about the sensitivity, specificity and costs new diagnostic tests should have to improve early diagnosis of rheumatoid arthritis (RA). Our objective was to explore the early cost-effectiveness of various new diagnostic test strategies in the workup of patients with inflammatory arthritis (IA) at risk of having RA. __Methods:__ A decision tree followed by a patient-level state transition model, using data from published literature, cohorts and trials, was used to evaluate diagnostic test strategies. Alternative tests were assessed as add-on to or replacement of the ACR/EULAR 2010 RA classification criteria for all patients and for intermediate-risk patients. Tests included B-cell gene expression (sensitivity 0.60, specificity 0.90, costs €150), MRI (sensitivity 0.90, specificity 0.60, costs €756), IL-6 serum level (sensitivity 0.70, specificity 0.53, costs €50) and genetic assay (sensitivity 0.40, specificity 0.85, costs €750). Patients with IA at risk of RA were followed for 5 years using a societal perspective. Guideline treatment was assumed using tight controlled treatment based on DAS28; if patients had a DAS28 >3.2 at 12 months or later patients could be eligible for starting biological drugs. The outcome was expressed in incremental cost-effectiveness ratios (€2014 per quality-adjusted life year (QALY) gained) and headroom. __Results:__ The B-cell test was the least expensive strategy when used as an add-on and as replacement in intermediate-risk patients, making it the dominant strategy, as it has better health outcomes and lower costs. As add-on for all patients, the B-cell test was also the most cost-effective test strategy. When using a willingness-to-pay threshold of €20,000 per QALY gained, the IL-6 and MRI

    Roles of proton-neutron interactions in alpha-like four-nucleon correlations

    Get PDF
    An extended pairing plus QQ force model, which has been shown to successfully explain the nuclear binding energy and related quantities such as the symmetry energy, is applied to study the alpha-like four-nucleon correlations in 1f_{7/2} shell nuclei. The double difference of binding energies, which displays a characteristic behavior at NZN \approx Z, is interpreted in terms of the alpha-like correlations. Important roles of proton-neutron interactions forming the alpha-like correlated structure are discussed.Comment: 10 pages, 2 figures, RevTex, submitted to Phys. Rev.

    Staggering effects in nuclear and molecular spectra

    Get PDF
    It is shown that the recently observed Delta J = 2 staggering effect (i.e. the relative displacement of the levels with angular momenta J, J+4, J+8, ..., relatively to the levels with angular momenta J+2, J+6, J+10, ...) seen in superdeformed nuclear bands is also occurring in certain electronically excited rotational bands of diatomic molecules (YD, CrD, CrH, CoH), in which it is attributed to interband interactions (bandcrossings). In addition, the Delta J = 1 staggering effect (i.e. the relative displacement of the levels with even angular momentum J with respect to the levels of the same band with odd J) is studied in molecular bands free from Delta J = 2 staggering (i.e. free from interband interactions/bandcrossings). Bands of YD offer evidence for the absence of any Delta J = 1 staggering effect due to the disparity of nuclear masses, while bands of sextet electronic states of CrD demonstrate that Delta J = 1 staggering is a sensitive probe of deviations from rotational behaviour, due in this particular case to the spin-rotation and spin-spin interactions.Comment: LaTeX, 16 pages plus 30 figures given in separate .ps files. To appear in the proceedings of the 4th European Workshop on Quantum Systems in Chemistry and Physics (Marly-le-Roi, France, 1999), ed. J. Maruani et al. (Kluwer, Dordrecht

    Collective T- and P- Odd Electromagnetic Moments in Nuclei with Octupole Deformations

    Get PDF
    Parity and time invariance violating forces produce collective P- and T- odd moments in nuclei with static octupole deformation. Collective Schiff moment, electric octupole and dipole and also magnetic quadrupole appear due to the mixing of rotational levels of opposite parity and can exceed single-particle moments by more than a factor of 100. This enhancement is due to two factors, the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. The above moments induce T- and P- odd effects in atoms and molecules. Experiments with such systems may improve substantially the limits on time reversal violation.Comment: 9 pages, Revte
    corecore