24 research outputs found

    Neutron-induced fission fragment angular distribution and cross section of uranium targets at CERN-n TOF

    Get PDF
    This thesis work focuses on the measurement of the fission fragment angular distribution (FFAD) and fission cross section of the reactions 234U(n,f) y 235U(n,f) using PPAC (Parallel Plate Avalanche Counter) detectors at the n_ TOF facility (CERN). This faci lity is characterised by a wide neutron spectrum from thermal to 1 GeV with a high energy resolution. This measurement has been performed using the tilted configuration of targets and detectors, which unlike the perpendicular configuration, allows to cover all the emission angles of the fission fragments. Results of the FFAD and the anisotropy parameter have been obtained up to 300 MeV for both reactions, providing for first time data of the 234U(n,f) above 15 MeV and completing the existing measurements of the 235U(n,f). The 235U(n,f) cross section has been obtained up to 100 keV using the neutron flux shape normalised to the IAEA secondary reference. The 234U(n,f) cross section has been calculated in two energy ranges up to 1 GeV using the 235U as reference. The obtained results of the FFAD and the fission cross section are discussed and compared with previous experimental data and with the evaluated librarie

    Study of the (n,

    No full text
    In the neutron resonance range, fission cross section of 239Pu can be seen as a sum of the immediate (n,f) and the two-step (n,γf) fission reactions. In that case, five channel widths should be considered for a proper evaluation, those are: two opened fission channels for Jπ = 0+, one opened fission channel for Jπ = 1+ and two J-dependent for the (n,γf) reaction. The sizeable contribution of the (n,γf) process should have an impact on the determination of the capture and fission widths involved in the Reich-Moore approximation of the R-matrix theory. The present work aims to investigate this impact by using the CONRAD code and the Γγf available from literature. Prompt neutron multiplicity (νp) has been also reproduced including the contributions of the (n,γf) process

    Study of the (n,γf) process on 239Pu

    Get PDF
    In the neutron resonance range, fission cross section of 239Pu can be seen as a sum of the immediate (n,f) and the two-step (n,γf) fission reactions. In that case, five channel widths should be considered for a proper evaluation, those are: two opened fission channels for Jπ = 0+, one opened fission channel for Jπ = 1+ and two J-dependent for the (n,γf) reaction. The sizeable contribution of the (n,γf) process should have an impact on the determination of the capture and fission widths involved in the Reich-Moore approximation of the R-matrix theory. The present work aims to investigate this impact by using the CONRAD code and the Γγf available from literature. Prompt neutron multiplicity (νp) has been also reproduced including the contributions of the (n,γf) process

    Covariance generation for the prompt neutron multiplicity of

    No full text
    Fission cross section of 239Pu can be seen as a sum of the “immediate" fission and “two-step" (n,γf) reactions. In the Resolved Resonance Range of the reaction cross sections, the contribution of the (n,γf) process has an impact on the determination of the partial widths magnitude involved in the Reich-Moore approximation of the R-matrix theory. The present work aims to investigate this impact by using the CONRAD code and the partial width Γγf for the (n,γf) reaction calculated by Lynn et al. [1]. A special attention will be paid to the covariance matrix obtained on νp

    U(n,γ) measurements at LANSCE

    No full text
    Uranium-233 plays an important role in the Th-U fuel cycle, which has been proposed as an alternative to the U-Pu fuel cycle due to its reduced amount of transuranium elements. The available experimental 233U(n,γ) cross section data in the literature are scarce, [1–3]. In 2008, the 233U(n,γ) cross section was investigated at LANL using the DANCE detector combined with a PPAC, however the statistics in the keV regime were inadequate for a reliable extraction of the cross section at 100 keV. An accurate measurement of the 233U(n,γ) cross section is required by the NCSP to complete the neutron-induced cross section data; a new evaluation reported the need of 233U capture data. The challenge in this measurement lies in the difficulty of measuring capture cross section data due to the competing capture and fission channels. Fission reactions are around one order of magnitude more likely than capture for 233U. The accuracy in the capture cross section measurement relies on the discrimination between the γ-rays produced in capture and fission reactions, for which an experimental setup combining capture and fission detectors is needed. Following this requirement, a new measurement has been performed at LANSCE combining the γ-ray array DANCE with the neutron detector NEUANCE to identify fission and neutron-capture events. This measurement will provide results of the 233U capture-to-fission ratio in the Resolved and Unresolved Resonance regions

    High accuracy 234U(n,f) cross section in the resonance energy region

    No full text
    New results are presented of the 234U neutron-induced fission cross section, obtained with high accuracy in the resonance region by means of two methods using the 235U(n,f) as reference. The recent evaluation of the 235U(n,f) obtained with SAMMY by L. C. Leal et al. (these Proceedings), based on previous n_TOF data [1], has been used to calculate the 234U(n,f) cross section through the 234U/235U ratio, being here compared with the results obtained by using the n_TOF neutron flux

    Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN)

    No full text
    The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns

    Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    No full text
    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction

    Neutron capture cross section measurement of 238U at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

    No full text
    The aim of this work is to provide a precise and accurate measurement of the 238U(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of 238U should be further reduced to 1–3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the n_TOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these 238U(n,γ) measurements performed at the n_TOF CERN facility are presented in this work. The γ-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher

    238U(n, γ) reaction cross section measurement with C6D6 detectors at the n_TOF CERN facility

    No full text
    The radiative capture cross section of 238U is very important for the developing of new reactor technologies and the safety of existing ones. Here the preliminary results of the 238U(n,γ) cross section measurement performed at n_TOF with C6D6 scintillation detectors are presented, paying particular attention to data reduction and background subtraction
    corecore