11 research outputs found

    Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models

    Get PDF
    Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation

    Scale-free dynamics of Covid-19 in a Brazilian city

    No full text
    A common basis to address the dynamics of directly transmitted infectious diseases, such as Covid-19, are compartmental (or SIR) models. SIR models typically assume homogenous population mixing, a simplification that is convenient but unrealistic. Here we validate an existing model of a scale-free fractal infection process using high-resolution data on Covid-19 spread in São Caetano, Brazil. We find that transmission can be described by a network in which each infectious individual has a small number of susceptible contacts, of the order of 2-5. This model parameter correlated tightly with physical distancing measured by mobile phone data, such that in periods of greater distancing the model recovered a lower average number of contacts, and vice versa. We show that the SIR model is a special case of our scale-free fractal process model in which the parameter that reflects population structure is set at unity, indicating homogeneous mixing. Our more general framework better explained the dynamics of Covid-19 in São Caetano, used fewer parameters than a standard SIR model and accounted for geographically localized clusters of disease. Our model requires further validation in other locations and with other directly transmitted infectious agents
    corecore