2 research outputs found
Genetic associations with clozapine-induced myocarditis in patients with schizophrenia
Clozapine is the most effective antipsychotic drug for schizophrenia, yet it can cause life-threatening adverse drug reactions, including myocarditis. The aim of this study was to determine whether schizophrenia patients with clozapine-induced myocarditis have a genetic predisposition compared with clozapine-tolerant controls. We measured different types of genetic variation, including genome-wide single-nucleotide polymorphisms (SNPs), coding variants that alter protein expression, and variable forms of human leucocyte antigen (HLA) genes, alongside traditional clinical risk factors in 42 cases and 67 controls. We calculated a polygenic risk score (PRS) based on variation at 96 different genetic sites, to estimate the genetic liability to clozapine-induced myocarditis. Our genome-wide association analysis identified four SNPs suggestive of increased myocarditis risk (P < 1 × 10-6), with odds ratios ranging 5.5-13.7. The SNP with the lowest P value was rs74675399 (chr19p13.3, P = 1.21 × 10-7; OR = 6.36), located in the GNA15 gene, previously associated with heart failure. The HLA-C*07:01 allele was identified as potentially predisposing to clozapine-induced myocarditis (OR = 2.89, 95% CI: 1.11-7.53), consistent with a previous report of association of the same allele with clozapine-induced agranulocytosis. Another seven HLA alleles, including HLA-B*07:02 (OR = 0.25, 95% CI: 0.05-1.2) were found to be putatively protective. Long-read DNA sequencing provided increased resolution of HLA typing and validated the HLA associations. The PRS explained 66% of liability (P value = 9.7 × 10-5). Combining clinical and genetic factors together increased the proportion of variability accounted for (r2 0.73, P = 9.8 × 10-9). However, due to the limited sample size, individual genetic associations were not statistically significant after correction for multiple testing. We report novel candidate genetic associations with clozapine-induced myocarditis, which may have potential clinical utility, but larger cohorts are required for replication
Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis
The inactivation of glycogen synthase kinase (GSK)3 has been proposed to play important roles in insulin and Wnt signalling. To define the role that inactivation of GSK3 plays, we generated homozygous knockin mice in which the protein kinase B phosphorylation sites on GSK3α (Ser21) and GSK3β (Ser9) were changed to Ala. The knockin mice were viable and were not diabetic. Using these mice we show that inactivation of GSK3β rather than GSK3α is the major route by which insulin activates muscle glycogen synthase. In contrast, we demonstrate that the activation of muscle glycogen synthase by contraction, the stimulation of muscle glucose uptake by insulin, or the activation of hepatic glycogen synthase by glucose do not require GSK3 phosphorylation on Ser21/Ser9. GSK3 also becomes inhibited in the Wnt-signalling pathway, by a poorly defined mechanism. In GSK3α/GSK3β homozygous knockin cells, Wnt3a induces normal inactivation of GSK3, as judged by the stabilisation of β-catenin and stimulation of Wnt-dependent transcription. These results establish the function of Ser21/Ser9 phosphorylation in several processes in which GSK3 inactivation has previously been implicated