73 research outputs found
Theory of vortex excitation imaging via an NMR relaxation measurement
The temperature dependence of the site-dependent nuclear spin relaxation time
T_1 around vortices is studied in s-wave and d-wave superconductors.Reflecting
low energy electronic excitations associated with the vortex core, temperature
dependences deviate from those of the zero-field case, and T_1 becomes faster
with approaching the vortex core. In the core region, T_1^{-1} has a new peak
below T_c. The NMR study by the resonance field dependence may be a new method
to prove the spatial resolved vortex core structure in various superconductors.Comment: 5 pages, 3 figure
Site-selective nuclear magnetic relaxation time in a superconducting vortex state
The temperature and field dependences of the site-selective nuclear spin
relaxation time T_1 around vortices are studied comparatively both for s-wave
and d-wave superconductors, based on the microscopic Bogoliubov-de Gennes
theory. Reflecting low energy electronic excitations associated with the vortex
core, the site selective temperature dependences deviate from those of the
zero-field case, and T_1 becomes faster with approaching the vortex core. In
the core region, T_1^{-1} has a new peak below the superconducting transition
temperature T_c. The field dependence of the overall T_1(T) behaviors for
s-wave and d-wave superconductors is investigated and analyzed in terms of the
local density of states. The NMR study by the resonance field dependence may be
a new method to probe the spatial resolved vortex core structure in various
conventional and unconventional superconductors.Comment: 14Pages, 26 figures, revte
Effects of gap anisotropy upon the electronic structure around a superconducting vortex
An isolated single vortex is considered within the framework of the
quasiclassical theory. The local density of states around a vortex is
calculated in a clean type II superconductor with an anisotropy. The anisotropy
of a superconducting energy gap is crucial for bound states around a vortex. A
characteristic structure of the local density of states, observed in the
layered hexagonal superconductor 2H-NbSe2 by scanning tunneling microscopy
(STM), is well reproduced if one assumes an anisotropic s-wave gap in the
hexagonal plane. The local density of states (or the bound states) around the
vortex is interpreted in terms of quasiparticle trajectories to facilitate an
understanding of the rich electronic structure observed in STM experiments. It
is pointed out that further fine structures and extra peaks in the local
density of states should be observed by STM.Comment: 11 pages, REVTeX; 20 PostScript figures; An Animated GIFS file for
the star-shaped vortex bound states is available at
http://mp.okayama-u.ac.jp/~hayashi/vortex.htm
The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions
We report the genome of the facultative intracellular parasite Rhodococcus equi, the only animal pathogen within the biotechnologically important actinobacterial genus Rhodococcus. The 5.0-Mb R. equi 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in R. equi. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main R. equi reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (rpl) and the virulence plasmid vap pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in R. equi are conserved in environmental rhodococci or have homologs in nonpathogenic Actinobacteria. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating R. equi virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with vap PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of R. equi
- …