25 research outputs found

    Temporal studies into attachment, VE-cadherin perturbation, and paracellular migration of human umbilical mesenchymal stem cells across umbilical vein endothelial monolayers

    Get PDF
    Mesenchymal stem cells from Wharton’s jelly of human umbilical cords (WJ-MSC) are a valuable alternate source of stem cells. Their role in situ and whether they can interact and cross intact endothelial monolayers requires elucidation. The aim of this study was to investigate the dynamic interactions between WJ-MSC and human umbilical vein endothelial cells (HUVEC), including attachment, transit times, extravasation pathway, and the effects of WJ-MSC on junctional vascular endothelial (VE)-cadherin. HUVEC were grown to near confluence in endothelial media and to full confluence in mixed media before the addition of PKH26-labelled WJ-MSC. Time lapse fluorescence microscopy showed stem cells undergoing membrane blebbing followed by amoeboid movement on HUVEC monolayers before rounding up and changing shape toward the spindleshaped morphology during/after transmigration to subendothelial positions. Cells demonstrated a time lag of 60 min before paracellular extravasation, confirmed by confocal microscopy. Forty-six percent of attached cells crossed in the first 2 h. By 16 h, a majority of cells had transmigrated with > 96% of cells crossing by 22 h. There were concomitant changes in endothelial junctional VE-cadherin with statistically significant increases in discontinuous staining at 2 h, return to control values at 16 h, even as from 22 h onward HUVEC displayed increased percentage of junctions with continuous staining and upregulation of protein. Our data suggests that WJ-MSC crosses the endothelial barrier through the paracellular pathway and can influence junctional organization of HUVEC with discreet perturbation of VE-cadherin preceding transmigration followed by upregulation once the adluminal side is reached. The latter may reflect a perivascular support function of WJ-MSC in the umbilical cord

    Impaired vasocontractile responses to adenosine in chorionic vessels of human term placenta from pregnant women with pre-existing and gestational diabetes

    Get PDF
    Background: There is clinical and experimental evidence for altered adenosine signalling in the fetoplacental circulation in pregnancies complicated by diabetes, leading to adenosine accumulation in the placenta. However, the consequence for fetoplacental vasocontractility is unclear. This study examined contractility to adenosine of chorionic vessels from type 1 diabetes mellitus, gestational diabetes mellitus and normal pregnancies. Methods: Chorionic arteries and veins were isolated from human placenta from normal, gestational diabetes mellitus and type 1 diabetes mellitus pregnancies. Isometric tension recording measured responses to adenosine and the thromboxane A2 analogue U46619 (thromboxane A2 mediates adenosine fetoplacental vasoconstriction). Adenosine and thromboxane prostanoid receptor protein expression was determined by immunoblotting. Results: Adenosine elicited contractions in chorionic arteries and veins which were impaired in both gestational diabetes mellitus and type 1 diabetes mellitus. Contractions to potassium chloride were unchanged. Adenosine A2A and A2B receptor protein levels were not different in gestational diabetes mellitus and normal pregnancies. Contractions to U46619 were unaltered in gestational diabetes mellitus arteries and increased in type 1 diabetes mellitus arteries. Overnight storage of vessels restored contractility to adenosine in gestational diabetes mellitus arteries and normalized contraction to U46619 in type 1 diabetes mellitus arteries. Conclusion: These data are consistent with the concept of aberrant adenosine signalling in diabetes; they show for the first time that this involves impaired adenosine contractility of the fetoplacental vasculature

    Regulation of human feto-placental endothelial barrier integrity by vascular endothelial growth factors: competitive interplay between VEGF-A165a, VEGF-A165b, PIGF and VE-cadherin

    Get PDF
    The human placenta nourishes and protects the developing fetus whilst influencing maternal physiology for fetal advantage. It expresses several members of the VEGF family including the pro-angiogenic/pro-permeability VEGF-A165a isoform, the anti-angiogenic VEGF-A165b, placental growth factor (PIGF) and their receptors, VEGFR1 and VEGFR2. Alterations in the ratio of these factors during gestation and in complicated pregnancies have been reported; however the impact of this on feto-placental endothelial barrier integrity is unknown. This study investigated the interplay of these factors on junctional occupancy of VE-cadherin and macromolecular leakage in human endothelial monolayers and the perfused placental microvascular bed. Whilst VEGF-A165a (50 ng/ml) increased endothelial monolayer albumin permeability (p0.05) or PlGF (p>0.05) did not. Moreover, VEGF-A165b (100 ng/ml; p0.05) inhibited VEGF-A165a-induced permeability when added singly. PlGF abolished the VEGF-A165b-induced reduction of VEGF-A165a mediated permeability (p>0.05); PlGF was found to compete with VEGF-A165b for binding to Flt-1 at equimolar affinity. Junctional occupancy of VE-cadherin matched alterations in permeability. In the perfused microvascular bed, VEGF-A165b did not induce microvascular leakage but inhibited and reversed VEGF-A165a-induced loss of junctional VE-cadherin and tracer leakage. These results indicate that the anti-angiogenic VEGF-A165b isoform does not increase permeability in human placental microvessels or HUVEC primary cells and can interrupt VEGF-A165a-induced permeability. Moreover, the interplay of these isoforms with PIGF (and s-flt1) suggests that the ratio of these three factors may be important in determining the placental and endothelial barrier in normal and complicated pregnancies

    Compromised barrier integrity of human feto-placental vessels from gestational diabetic pregnancies is related to downregulation of occludin expression

    Get PDF
    © 2020, The Author(s). Aims/hypothesis: Reduced occupancy of junctional occludin is a feature of human placental vessels in the diabetic milieu. However, the functional consequence of this and whether this loss is due to differential expression of occludin splice variants is not known. Our study aimed to investigate the effects of gestational diabetes mellitus (GDM), and its treatment, on endothelial junctional integrity, gene and protein expression of occludin splice variants, and potential regulation of expression by microRNAs (miRNAs). Methods: Term placentas were obtained from normal pregnancies (n = 21), and pregnancies complicated by GDM where glucose levels were controlled by diet (n = 11) or metformin (n = 6). Gene and microRNA (miRNA) expression were determined by quantitative real-time PCR; protein expression by immunoblotting; endothelial junctional occupancy by fluorescence microscopy and systematic sampling; and paracellular leakage by perfusion of placental microvascular beds with 76 Mr dextran. Transfection studies of miRNAs that target OCLN were performed in HUVECs, and the trans-endothelial electrical resistance and tracer permeability of the HUVECs were measured. Results: All three predicted OCLN gene splice variants and two occludin protein isoforms were found in human placental samples. In placental samples from diet-controlled GDM (d-GDM) pregnancies we found a lower percentage of conduit vessels showing occludin immunoreactivity (12%, p < 0.01), decreased levels of the fully functional occludin isoform-A protein (29%), and differential gene expression of OCLN variant 2 (33% decrease), variant 3 (3.3-fold increase). These changes were not seen in samples from the group with metformin-controlled GDM. In d-GDM placentas, increased numbers of conduit microvessels demonstrated extravasation of 76 Mr dextran (2.0-fold). In d-GDM expression of one of the five potential miRNAs targeting OCLN, miR-181a-5p, expression was 2.1-fold that in normal pregnancies. Experimental overexpression of miR-181a-5p in HUVECs from normal pregnancies resulted in a highly significant downregulation of OCLN variant 1 (69%) and variant 2 (46%) gene expression, with decreased trans-endothelial resistance (78%) and increase in tracer permeability (1.3-fold). Conclusions/interpretation: Downregulation of expression of OCLN variant 2 and the fully functional occludin isoform-A protein are a feature of placentas in d-GDM pregnancies. These may be behind the loss of junctional occludin and the increased extravasation of exogenous dextran observed. miR-181a-5p was in part responsible for the downregulation of occludin in placentas from d-GDM pregnancies. Induced overexpression of miR-181a-5p compromised the integrity of the endothelial barrier. Our data suggest that, despite good glucose control, the adoption of lifestyle changes alone during a GDM pregnancy may not be enough to prevent an alteration in the expression of occludin and the subsequent functional consequences in placentas and impaired vascular barrier function in offspring. [Figure not available: see fulltext.

    Activation of Notch signalling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway

    Get PDF
    © 2019 the American Physiological Society. The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A

    Transendothelial migration of human umbilical mesenchymal stem cells across uterine endothelial monolayers: junctional dynamics and putative mechanisms

    Get PDF
    Introduction: During pregnancy, fetal stem cells can transfer to the maternal circulation and participate in tissue repair. How they transmigrate across maternal endothelial barriers and whether they can subsequently influence maternal endothelial integrity is not known. Methods: Mesenchymal stem cells (WJ-MSC) were isolated from Wharton's jelly and their interactions with human uterine microvascular endothelial cell (HUtMEC) monolayers, junctional occupancy and expression/phosphorylation of vascular endothelial (VE)- cadherin and vascular endothelial growth factor (VEGF-A) secretion was studied over 48h by real time, confocal microscopy, immunoblotting and ELISA. Results: WJ-MSC displayed exploratory behaviour with interrogation of paracellular openings and spreading into the resultant increased gaps followed by closing of the endothelium over the WJ-MSC. 62% of added cells crossed within 22h to sub-endothelial niches. There was a concomitant loss of junctional VE-cadherin in HUtMEC followed by a full return and increased VE-cadherin expression after 22h. During early hours, VE-cadherin showed a transient phosphorylation at Tyrosine (Tyr)-685 when VEGF-A secretion were high. From 16 to 22h, there was increased de-phosphorylation of Tyr-731. Anti-VEGF-A blocked Tyr-685 phosphorylation but not the decrease in P-Tyr731; this partially inhibited WJ-MSC transmigration. Discussion: Fetal WJ-MSC can traverse uterine endothelial monolayers by mediating a non-destructive paracellular pathway. They can promote junctional stability of uterine endothelium from the sub-endothelial niche. Mechanistically, WJ-MSC induces VEGF-dependent phosphorylation events linked with paracellular permeability and VEGF-independent de-phosphorylation events associated with leukocyte extravasation. Our data also allows consideration of a possible role of fetal MSC in mature functioning of the uterine vasculature needed for optimal utero-placental perfusion

    The haemodynamics of the human placenta in utero

    Get PDF
    © 2020 Dellschaft et al. We have used magnetic resonance imaging (MRI) to provide important new insights into the function of the human placenta in utero. We have measured slow net flow and high net oxygenation in the placenta in vivo, which are consistent with efficient delivery of oxygen from mother to fetus. Our experimental evidence substantiates previous hypotheses on the effects of spiral artery remodelling in utero and also indicates rapid venous drainage from the placenta, which is important because this outflow has been largely neglected in the past. Furthermore, beyond Braxton Hicks contractions, which involve the entire uterus, we have identified a new physiological phenomenon, the 'utero-placental pump', by which the placenta and underlying uterine wall contract independently of the rest of the uterus, expelling maternal blood from the intervillous space
    corecore