695 research outputs found
Organization Development for Social Change
The field of organization development (OD) has emerged from efforts to improve the performance of organizations, largely in the for-profit sector but more recently in the public and not-for-profit sectors as well. This paper examines how OD concepts and tools can be used to solve problems and foster constructive change at the societal level as well. It examines four areas in which OD can make such contributions: (1) strengthening social change-focused organizations, (2) scaling up the impacts of such agencies, (3) creating new inter-organizational systems, and (4) changing contexts that shape the action of actors strategic to social change. It discusses examples and the kinds of change agent roles and interventions that are important for each. Finally, it discusses some implications for organization development intervention, practitioners, and the field at large.This publication is Hauser Center Working Paper No. 25. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers
Ceramic identity contributes to mechanical properties and osteoblast behavior on macroporous composite scaffolds.
Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide) (PLG) and either hydroxyapatite (HA), β-tricalcium phosphate (TCP), or bioactive glass (Bioglass 45S®, BG) were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts) to composite scaffolds by alkaline phosphatase (ALP) activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC) was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing
Searches for massive neutrinos with mechanical quantum sensors
The development of quantum optomechanics now allows mechanical sensors with
femtogram masses to be controlled and measured in the quantum regime. If the
mechanical element contains isotopes that undergo nuclear decay, measuring the
recoil of the sensor following the decay allows reconstruction of the total
momentum of all emitted particles, including any neutral particles that may
escape detection in traditional detectors. As an example, for weak nuclear
decays the momentum of the emitted neutrino can be reconstructed on an
event-by-event basis. We present the concept that a single nanometer-scale,
optically levitated sensor operated with sensitivity near the standard quantum
limit can search for heavy sterile neutrinos in the keV-MeV mass range with
sensitivity significantly beyond existing constraints. We also comment on the
possibility that mechanical sensors operated well into the quantum regime might
ultimately reach the sensitivities required to provide an absolute measurement
of the mass of the light neutrino states.Comment: 11 pages + refs, 7 figures. v2: published version (+ an appendix
containing a quantum model of the 3-body decay in a nanosphere
Quantum correlations in position, momentum, and intermediate bases for a full optical field of view
We report an eight-element, linear-array, single-photon detector that uses multiple fibers of differing lengths coupled to a single detector, the timing information from which reveals the position in which the photon was measured. Using two such arrays and two detectors we measure the correlations of photons produced by parametric downconversion, without recourse to mechanical scanning. Spatial light modulators acting as variable focal length lenses positioned between the downconversion crystal and the arrays allow us to switch between measurement of position, transverse momentum, or intermediate bases. We observe the product of the variances of the conditional probabilities for position and momentum to be more than an order of magnitude below the classical limit, realizing a full-field demonstration of the Einstein-Podolsky-Rosen paradox. Such, multistate measurement technologies allow access to the higher information content of the photon based upon spatial modes
Generating samples of extreme winters to support climate adaptation
Recent extreme weather across the globe highlights the need to understand the potential for more extreme events in the present-day, and how such events may change with global warming. We present a methodology for more efficiently sampling extremes in future climate projections. As a proof-of-concept, we examine the UK’s most recent set of national Climate Projections (UKCP18). UKCP18 includes a 15-member perturbed parameter ensemble (PPE) of coupled global simulations, providing a range of climate projections incorporating uncertainty in both internal variability and forced response. However, this ensemble is too small to adequately sample extremes with very high return periods, which are of interest to policy-makers and adaptation planners. To better understand the statistics of these events, we use distributed computing to run three 1000-member initial-condition ensembles with the atmosphere-only HadAM4 model at 60km resolution on volunteers’ computers, taking boundary conditions from three distinct future extreme winters within the UKCP18 ensemble. We find that the magnitude of each winter extreme is captured within our ensembles, and that two of the three ensembles are conditioned towards producing extremes by the boundary conditions. Our ensembles contain several extremes that would only be expected to be sampled by a UKCP18 PPE of over 500 members, which would be prohibitively expensive with current supercomputing resource. The most extreme winters we simulate exceed those within UKCP18 by 0.85 K and 37% of the present-day average for UK winter means of daily maximum temperature and precipitation respectively. As such, our ensembles contain a rich set of multivariate, spatio-temporally and physically coherent samples of extreme winters with wide-ranging potential applications
Linearisation of a second-order nonlinear ordinary differential equation
We analyse nonlinear second-order differential equations in terms of algebraic properties by reducing a nonlinear partial differential equation to a nonlinear second-order ordinary differential equation via the point symmetry f(v)∂v. The eight Lie point symmetries obtained for the second-order ordinary differential equation is of maximal number and a representation of the sl(3,R) algebra. We extend this analysis to a more general nonlinear second-order differential equation and we obtain similar interesting algebraic properties
Improved statistical methods for estimating infestation rates in quarantine research when hosts are naturally infested
Trading partners often require phytosanitary or quarantine treatments for fresh horticultural produce to ensure no economically important pest species are moved with the imported product. When developing such treatments, it is essential that the level of treatment efficacy can be determined. This is often based on the mortality of the total number of target pests exposed to treatment, but in naturally infested products this number is not always known. In such cases, the infestation rate and subsequently an estimate of the number of pests are obtained directly from a set of untreated control samples of the host product. The International Plant Protection Convention (IPPC) Secretariat has provided 2 formulas for these situations that place an interval around the point estimate obtained from the control samples to obtain an estimate of the infestation rate. However, these formulas do not allow a confidence level to be assigned to the estimate, and there are concerns with the assumptions regarding the distribution and the measure of variability used in the formulas. In this article, we propose 2 alternative formulas. We propose that the lower one-sided confidence limit should be applied to all infestation datasets that are approximately normally distributed. As infestation data are sometimes skewed, it is proposed the lower one-sided modified Cox confidence limit is applied to data approximately log-normal distributed. These well-recognized formulas are compared to the formulas recommended by the IPPC and applied to 3 datasets involving natural infestation
Holographic assembly of quasicrystalline photonic heterostructures
Quasicrystals have a higher degree of rotational and point-reflection
symmetry than conventional crystals. As a result, quasicrystalline
heterostructures fabricated from dielectric materials with micrometer-scale
features exhibit interesting and useful optical properties including large
photonic bandgaps in two-dimensional systems. We demonstrate the holographic
assembly of two-dimensional and three-dimensional dielectric quasicrystalline
heterostructures, including structures with specifically engineered defects.
The highly uniform quasiperiodic arrays of optical traps used in this process
also provide model aperiodic potential energy landscapes for fundamental
studies of transport and phase transitions in soft condensed matter systems.Comment: 3 pages, 3 figures, submitted to Optics Expres
Sequence-Specific, Nanomolar Peptide Binding via Cucurbit[8]uril-Induced Folding and Inclusion of Neighboring Side Chains
This paper describes the molecular recognition of the tripeptide Tyr-Leu-Ala by the synthetic receptor cucurbit[8]uril (Q8) in aqueous buffer with nanomolar affinity and exceptional specificity. This combination of characteristics, which also applies to antibodies, is desirable for applications in biochemistry and biotechnology but has eluded supramolecular chemists for decades. Building on prior knowledge that Q8 binds to peptides with N-terminal aromatic residues, a library screen of 105 peptides was designed to test the effects of residues adjacent to N-terminal Trp, Phe, or Tyr. The screen used tetramethylbenzobis(imidazolium) (MBBI) as a fluorescent indicator and resulted in the unexpected discovery that MBBI can serve not only as a turn-off sensor via the simultaneous inclusion of a Trp residue but also as a turn-on sensor via the competitive displacement of MBBI upon binding of Phe- or Tyr-terminated peptides. The unusual fluorescence response of the Tyr series prompted further investigation by 1H NMR spectroscopy, electrospray ionization mass spectrometry, and isothermal titration calorimetry. From these studies, a novel binding motif was discovered in which only 1 equiv of peptide binds to Q8, and the side chains of both the N-terminal Tyr residue and its immediate neighbor bind within the Q8 cavity. For the peptide Tyr-Leu-Ala, the equilibrium dissociation constant value is 7.2 nM, whereas that of its sequence isomer Tyr-Ala-Leu is 34 μM. The high stability, recyclability, and low cost of Q8 combined with the straightforward incorporation of Tyr-Leu-Ala into recombinant proteins should make this system attractive for the development of biological applications
- …