22 research outputs found
Light Quark Masses with an O(a)-Improved Action
We present the recent Fermilab calculations of the masses of the light
quarks, using tadpole-improved Sheikholeslami-Wohlert (SW) quarks. Various
sources of systematic errors are studied. Our final result for the average
light quark mass in the quenched approximation evaluated in the
scheme is .Comment: 3 pgs. 3 figures. espcrc2.sty included. Talk presented at
LATTICE96(phenomenology
The anti-B --> D* lepton anti-neutrino form factor at zero recoil and the determination of V(cb)
We summarize our lattice QCD study of the form factor at zero recoil in the
decay anti-B --> D* lepton anti-neutrino. After careful consideration of all
sources of systematic uncertainty, we find,
h_A1(1) = 0.913(+0.024-0.017)(+0.017-0.030), where the first uncertainty is
from statistics and fitting while the second combined uncertainty is from all
other systematic effects.Comment: Lattice2001(HeavyQuark); 3 pages, 2 eps figures, espcrc2.st
Application of heavy-quark effective theory to lattice QCD: III. Radiative corrections to heavy-heavy currents
We apply heavy-quark effective theory (HQET) to separate long- and
short-distance effects of heavy quarks in lattice gauge theory. In this paper
we focus on flavor-changing currents that mediate transitions from one heavy
flavor to another. We stress differences in the formalism for heavy-light
currents, which are discussed in a companion paper, showing how HQET provides a
systematic matching procedure. We obtain one-loop results for the matching
factors of lattice currents, needed for heavy-quark phenomenology, such as the
calculation of zero-recoil form factors for the semileptonic decays . Results for the Brodsky-Lepage-Mackenzie scale are also
given.Comment: 35 pages, 17 figures. Program LatHQ2QCD to compute matching one-loop
coefficients available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD
Application of heavy-quark effective theory to lattice QCD: II. Radiative corrections to heavy-light currents
We apply heavy-quark effective theory to separate long- and short-distance
effects of heavy quarks in lattice gauge theory. In this approach, the inverse
heavy-quark mass and the lattice spacing are treated as short distances, and
their effects are lumped into short-distance coefficients. We show how to use
this formalism to match lattice gauge theory to continuum QCD, order by order
in the heavy-quark expansion. In this paper, we focus on heavy-light currents.
In particular, we obtain one-loop results for the matching factors of lattice
currents, needed for heavy-quark phenomenology, such as the calculation of
heavy-light decay constants, and heavy-to-light transition form factors.
Results for the Brodsky-Lepage-Mackenzie scale are also given.Comment: 32 pages, 8 figures. v2 corrects Eqs. (4.9) and (4.10) and adds a
reference. Program LatHQ2QCD to compute matching one-loop coefficients
available at http://theory.fnal.gov/people/kronfeld/LatHQ2QCD
The nucleon's strange electromagnetic and scalar matrix elements
Quenched lattice QCD simulations and quenched chiral perturbation theory are
used together for this study of strangeness in the nucleon. Dependences of the
matrix elements on strange quark mass, valence quark mass and momentum transfer
are discussed in both the lattice and chiral frameworks. The combined results
of this study are in good agreement with existing experimental data and
predictions are made for upcoming experiments. Possible future refinements of
the theoretical method are suggested.Comment: 24 pages, 9 figure
Associated Higgs production with top quarks at the Large Hadron Collider: NLO QCD corrections
We present in detail the calculation of the O(alpha_s^3) inclusive total
cross section for the process pp -> t-tbar-h, in the Standard Model, at the
CERN Large Hadron Collider with center-of-mass energy sqrt(s_H)=14 TeV. The
calculation is based on the complete set of virtual and real O(alpha_s)
corrections to the parton level processes q-qbar -> t-tbar-h and gg ->
t-tbar-h, as well as the tree level processes (q,qbar)g -> t-tbar-h-(q,qbar).
The virtual corrections involve the computation of pentagon diagrams with
several internal and external massive particles, first encountered in this
process. The real corrections are computed using both the single and the two
cutoff phase space slicing method. The next-to-leading order QCD corrections
significantly reduce the renormalization and factorization scale dependence of
the Born cross section and moderately increase the Born cross section for
values of the renormalization and factorization scales above m_t.Comment: 70 pages, 12 figures, RevTeX4: one word changed in the abstract, one
sentence reworded in the introduction. To appear in Phys. Rev.
Scale of fermion mass generation
Unitarity of longitudinal weak vector boson scattering implies an upper bound
on the scale of electroweak symmetry breaking, 1 TeV. Appelquist and Chanowitz have derived an analogous
upper bound on the scale of fermion mass generation, proportional to ,
by considering the scattering of same-helicity fermions into pairs of
longitudinal weak vector bosons in a theory without a standard Higgs boson. We
show that there is no upper bound, beyond that on the scale of electroweak
symmetry breaking, in such a theory. This result is obtained by considering the
same process, but with a large number of longitudinal weak vector bosons in the
final state. We further argue that there is no scale of (Dirac) fermion mass
generation in the standard model. In contrast, there is an upper bound on the
scale of Majorana-neutrino mass generation, given by . In general, the upper bound on the scale of fermion mass generation
depends on the dimensionality of the interaction responsible for generating the
fermion mass. We explore the scale of fermion mass generation in a variety of
excursions from the standard model: models with fermions in nonstandard
representations, a theory with higher-dimension interactions, a
two-Higgs-doublet model, and models without a Higgs boson.Comment: 31 pages, 9 figures; version accepted for publication in Phys. Rev.
Coulomb gauge approach to (qqg)over-bar hybrid mesons
An effective Coulomb gauge Hamiltonian, H-eff, is used to calculate the light ( u (u) over barg), strange ( s (s) over barg) and charmed (c (c) over barg) hybrid meson spectra. For the same two parameter H-eff providing glueball masses consistent with lattice results and a good description of the observed u, d, s and c quark mesons, a large-scale variational treatment predicts that the lightest hybrid has J(PC) = 0(++) and mass 2.1 GeV. The lightest exotic 1(-+) state is just above 2.2 GeV, near the upper limit of lattice and flux tube predictions. These theoretical formulations all indicate that the observed 1(-+) pi(1)(1600) and, more clearly, pi(1)(1400) are not hybrid states. The Coulomb gauge approach further predicts that in the strange and charmed sectors, respectively, the ground state hybrids have 1(+-) with masses 2.1 and 3.8 GeV, while the. rst exotic 1( +) states are at 2.4 and 4.0 GeV. Finally, using our hybrid wavefunctions and the Franck-Condon principle, a novel experimental signature is presented to assist heavy hybrid meson searches
Recommended from our members
The hadronic vacuum polarization of the muon from four-flavor lattice QCD
We present an update on the ongoing calculations by the Fermilab Lattice, HPQCD, and MILC Collaboration of the leading-order (in electromagnetism) hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. Our project employs ensembles with four flavors of highly improved staggered fermions, physical light-quark masses, and four lattice spacings ranging from a ≈ 0.06 to 0.15 fm for most of the results thus far. © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]