62 research outputs found
Epitaxial growth in dislocation-free strained alloy films: Morphological and compositional instabilities
The mechanisms of stability or instability in the strained alloy film growth
are of intense current interest to both theorists and experimentalists. We
consider dislocation-free, coherent, growing alloy films which could exhibit a
morphological instability without nucleation. We investigate such strained
films by developing a nonequilibrium, continuum model and by performing a
linear stability analysis. The couplings of film-substrate misfit strain,
compositional stress, deposition rate, and growth temperature determine the
stability of film morphology as well as the surface spinodal decomposition. We
consider some realistic factors of epitaxial growth, in particular the
composition dependence of elastic moduli and the coupling between top surface
and underlying bulk of the film. The interplay of these factors leads to new
stability results. In addition to the stability diagrams both above and below
the coherent spinodal temperature, we also calculate the kinetic critical
thickness for the onset of instability as well as its scaling behavior with
respect to misfit strain and deposition rate. We apply our results to some real
growth systems and discuss the implications related to some recent experimental
observations.Comment: 26 pages, 13 eps figure
Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility
Issues of morphology, nucleation and growth of Ge cluster arrays deposited by
ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered.
Difference in nucleation of quantum dots during Ge deposition at low (<600 deg
C) and high (>600 deg. C) temperatures is studied by high resolution scanning
tunneling microscopy. The atomic models of growth of both species of Ge
huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at
low temperatures is explored. A problem of lowering of the array formation
temperature is discussed with the focus on CMOS compatibility of the entire
process; a special attention is paid upon approaches to reduction of treatment
temperature during the Si(001) surface pre-growth cleaning, which is at once a
key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array
formation process. The temperature of the Si clean surface preparation, the
final high-temperature step of which is, as a rule, carried out directly in the
MBE chamber just before the structure deposition, determines the compatibility
of formation process of Ge-QD-array based devices with the CMOS manufacturing
cycle. Silicon surface hydrogenation at the final stage of its wet chemical
etching during the preliminary cleaning is proposed as a possible way of
efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure
Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study
The formation of coherently strained three-dimensional islands on top of the
wetting layer in Stranski-Krastanov mode of growth is considered in a model in
1+1 dimensions accounting for the anharmonicity and non-convexity of the real
interatomic forces. It is shown that coherent 3D islands can be expected to
form in compressed rather than in expanded overlayers beyond a critical lattice
misfit. In the latter case the classical Stranski-Krastanov growth is expected
to occur because the misfit dislocations can become energetically favored at
smaller island sizes. The thermodynamic reason for coherent 3D islanding is the
incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer
height islands with a critical size appear as necessary precursors of the 3D
islands. The latter explains the experimentally observed narrow size
distribution of the 3D islands. The 2D-3D transformation takes place by
consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc.,
after exceeding the corresponding critical sizes. The rearrangements are
initiated by nucleation events each next one requiring to overcome a lower
energetic barrier. The model is in good qualitative agreement with available
experimental observations.Comment: 12 pages text, 15 figures, Accepted in Phys.Rev.B, Vol.61, No2
- âŠ