3,165 research outputs found
Fire protection and recompression systems for a hypobaric research chamber Final report, Jul. - Dec. 1967
Fire detection-extinguishment and automatic rapid recompression systems for hypobaric spacecraft cabin simulator
Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths
The sub-population of quasars reddened by intrinsic or intervening clouds of
dust are known to be underrepresented in optical quasar surveys. By defining a
complete parent sample of the brightest and spatially unresolved quasars in the
COSMOS field, we quantify to which extent this sub-population is fundamental to
our understanding of the true population of quasars. By using the available
multiwavelength data of various surveys in the COSMOS field, we built a parent
sample of 33 quasars brighter than mag, identified by reliable X-ray to
radio wavelength selection techniques. Spectroscopic follow-up with the
NOT/ALFOSC was carried out for four candidate quasars that had not been
targeted previously to obtain a 100\% redshift completeness of the sample. The
population of high quasars (HAQs), a specific sub-population of quasars
selected from optical/near-infrared photometry, is found to contribute
of the parent sample. The full population of bright spatially
unresolved quasars represented by our parent sample consists of
reddened quasars defined by having , and
of the sample having assuming the extinction
curve of the Small Magellanic Cloud. We show that the HAQ selection works well
for selecting reddened quasars, but some are missed because their optical
spectra are too blue to pass the color cut in the HAQ selection. This is
either due to a low degree of dust reddening or anomalous spectra. We find that
the fraction of quasars with contributing light from the host galaxy is most
dominant at . At higher redshifts the population of spatially
unresolved quasars selected by our parent sample is found to be representative
of the full population at mag. This work quantifies the bias against
reddened quasars in studies that are based solely on optical surveys.Comment: 22 pages, 10 figures, accepted for publication in A&A. The ArXiv
abstract has been shortened for it to be printabl
Serendipitous discovery of a projected pair of QSOs separated by 4.5 arcsec on the sky
We present the serendipitous discovery of a projected pair of quasi-stellar
objects (QSOs) with an angular separation of arcsec. The
redshifts of the two QSOs are widely different: one, our programme target, is a
QSO with a spectrum consistent with being a narrow line Seyfert 1 AGN at
. For this target we detect Lyman-, \ion{C}{4}, and
\ion{C}{3]}. The other QSO, which by chance was included on the spectroscopic
slit, is a Type 1 QSO at a redshift of , for which we detect
\ion{C}{4}, \ion{C}{3]} and \ion{Mg}{2}. We compare this system to previously
detected projected QSO pairs and find that only about a dozen previously known
pairs have smaller angular separation.Comment: 4 pages, 3 figures. Accepted for publication in A
Optical and radio observations of a sample of 52 powerful ultra-steep spectrum radio sources
We present the results of radio (VLA) and optical (ESO/La Silla) imaging of a sample of 52 radio sources having an ultra-steep radio spectrum with mostly steeper than -1.1 at decimetre wavelengths (median ). Radio-optical overlays are presented to an astrometric accuracy of ~1\arcsec. For 41 of the sources, radio spectral indices are newly determined using unpublished observations made with the 100-m Effelsberg radio telescope. For 14 of the sources identified with relatively brighter optical counterparts, spectroscopic observations were also carried out at La Silla and their redshifts are found to lie in the range 0.4 to 2.6. These observations have revealed three distant clusters of galaxies with redshifts of 0.55, 0.75 and 0.79, and we suggest that, together with an ultra-steep radio spectrum and relaxed radio morphology, the presence of a LINER spectrum in the optical can be used as a powerful indicator of rich clusters of galaxies. Additional candidates of this type in our sample are pointed out. Also, sources exhibiting particularly interesting radio-optical morphological relationships are highlighted. We further note the presence of six sources in our sample for which the optical counterpart (either detected or undetected) is fainter than and the radio extent is small (<10\arcsec). These ultra-steep spectrum radio sources are good signposts for discovering massive galaxies out to very large redshifts
Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria
International audienceA soil-vegetation-atmosphere transfer model coupled with a macroscale distributed hydrological model was used in order to simulate the water cycle for a large region in Bulgaria. To do so, an atmospheric forcing was built for two hydrological years (1 October 1995 to 30 September 1997), at an eight km resolution. It was based on the data available at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria. Atmospheric parameters were carefully checked and interpolated with a high level of detail in space and time (3-h step). Comparing computed Penman evapotranspiration versus observed pan evaporation validated the quality of the implemented forcing. The impact of the human activities on the rivers (especially hydropower or irrigation) was taken into account. Some improvements of the hydrometeorological model were made: for better simulation of summer riverflow, two additional reservoirs were added to simulate the slow component of the runoff. Those reservoirs were calibrated using the observed data of the 1st year, while the 2nd year was used for validation. 56 hydrologic stations and 12 dams were used for the model calibration while 41 rivergages were used for the validation of the model. The results compare well with the daily-observed discharges, with good results obtained over more than 25% of the rivergages. The simulated snow depth was compared to daily measurements at 174 stations and the evolution of the snow water equivalent was validated at 5 sites. The process of melting and refreezing of snow was found to be important on this region. The comparison of the normalized values of simulated versus measured soil moisture showed good correlation. The surface water budget shows large spatial variations due to the elevation influence on the precipitations, soil properties and vegetation variability. An inter annual difference was observed in the water cycle as the first year was more influenced by Mediterranean climate, while the second year was characterised by continental influence. Energy budget shows a dominating sensible heat component in summer, due to the fact that the water stress limits the evaporation. This study is a first step for the implementation of an operational hydrometeorological model that could be used for real time monitoring and forecast the water budget and the riverflow of Bulgaria
Statistical properties of random matrix product states
We study the set of random matrix product states (RMPS) introduced in
arXiv:0908.3877 as a tool to explore foundational aspects of quantum
statistical mechanics. In the present work, we provide an accurate numerical
and analytical investigation of the properties of RMPS. We calculate the
average state of the ensemble in the non-homogeneous case, and numerically
check the validity of this result. We also suggest using RMPS as a tool to
approximate properties of general quantum random states. The numerical
simulations presented here support the accuracy and efficiency of this
approximation. These results suggest that any generalized canonical state can
be approximated with high probability by the reduced density matrix of a random
MPS, if the average MPS coincide with the associated microcanonical ensemble.Comment: 12 pages, 17 figures; published versio
Phase space measure concentration for an ideal gas
We point out that a special case of an ideal gas exhibits concentration of
the volume of its phase space, which is a sphere, around its equator in the
thermodynamic limit. The rate of approach to the thermodynamic limit is
determined. Our argument relies on the spherical isoperimetric inequality of
L\'{e}vy and Gromov.Comment: 15 pages, No figures, Accepted by Modern Physics Letters
Negative emotional experiences during navigation enhance parahippocampal activity during recall of place information
It is known that the parahippocampal cortex is involved in object-place associations in spatial learning, but it remains unknown whether activity within this region is modulated by affective signals during navigation. Here we used fMRI to measure the neural consequences of emotional experiences on place memory during navigation. A day before scanning, participants undertook an active object location memory task within a virtual house in which each room was associated with a different schedule of task-irrelevant emotional events. The events varied in valence (positive, negative, or neutral) and in their rate of occurrence (intermittent vs. constant). On a subsequent day, we measured neural activity while participants were shown static images of the previously learned virtual environment, now in the absence of any affective stimuli. Our results showed that parahippocampal activity was significantly enhanced bilaterally when participants viewed images of a room in which they had previously encountered negatively arousing events. We conclude that such automatic enhancement of place representations by aversive emotional events serves as an important adaptive mechanism for avoiding future threats
- …