16 research outputs found

    Computationally Efficient Confidence Intervals for Cross-validated Area Under the ROC Curve Estimates

    Get PDF
    In binary classification problems, the area under the ROC curve (AUC), is an effective means of measuring the performance of your model. Most often, cross-validation is also used, in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we must obtain an estimate for its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, calculating the cross-validated AUC on even a relatively small data set can still require a large amount of computation time. Thus, when the processes of obtaining a single estimate for cross-validated AUC is significant, the bootstrap, as a means of variance estimation, can be computationally intractable. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC

    See Also

    No full text
    Subsemble is a general subset ensemble prediction method, which can be used for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of observations, fits a specified underlying algorithm on each subset, and uses a unique form of V-fold cross-validation to output a prediction function that combines the subset-specific fits. An oracle result provides a theoretical performance guarantee for Subsemble

    Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates

    No full text
    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC

    Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates

    No full text
    In binary classification problems, the area under the ROC curve (AUC) is commonly used to evaluate the performance of a prediction model. Often, it is combined with cross-validation in order to assess how the results will generalize to an independent data set. In order to evaluate the quality of an estimate for cross-validated AUC, we obtain an estimate of its variance. For massive data sets, the process of generating a single performance estimate can be computationally expensive. Additionally, when using a complex prediction method, the process of cross-validating a predictive model on even a relatively small data set can still require a large amount of computation time. Thus, in many practical settings, the bootstrap is a computationally intractable approach to variance estimation. As an alternative to the bootstrap, we demonstrate a computationally efficient influence curve based approach to obtaining a variance estimate for cross-validated AUC
    corecore