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Computationally Efficient Confidence
Intervals for Cross-validated Area Under the

ROC Curve Estimates

Erin LeDell, Maya L. Petersen, and Mark J. van der Laan

Abstract

In binary classification problems, the area under the ROC curve (AUC), is an
effective means of measuring the performance of your model. Most often, cross-
validation is also used, in order to assess how the results will generalize to an
independent data set. In order to evaluate the quality of an estimate for cross-
validated AUC, we must obtain an estimate for its variance. For massive data sets,
the process of generating a single performance estimate can be computationally
expensive. Additionally, when using a complex prediction method, calculating
the cross-validated AUC on even a relatively small data set can still require a
large amount of computation time. Thus, when the processes of obtaining a sin-
gle estimate for cross-validated AUC is significant, the bootstrap, as a means of
variance estimation, can be computationally intractable. As an alternative to the
bootstrap, we demonstrate a computationally efficient influence curve based ap-
proach to obtaining a variance estimate for cross-validated AUC.



1 Introduction

The area under the ROC curve, or AUC, is a ranking-based measure of classification performance,
which is a popular performance measure in binary classification problems. Its value can be inter-
preted as the probability that a randomly selected positive sample will rank higher than a randomly
selected negative sample. AUC is a more discriminating performance measure than accuracy [Ling
et al., 2003], and is invariant to relative class distributions [Bradley, 1997]. Due to its many strengths
over other performance measures, AUC is widely used.

In practice, we are generally concerned with how well our results will generalize to new data. Cross-
validation is a means of obtaining an estimate that is generalizable to data outside your training
set, or can also be used to perform model selection. Common types of cross-validation procedures
include V -fold [Geisser, 1975], leave-one-out [Stone, 1974, Allen, 1974, Geisser, 1975], and leave-p-
out [Shao, 1993] cross-validation. Given the advantages of AUC as a performance measure, along
with the desire to produce generalizable results, cross-validated AUC is a frequently used estimate
in binary classification problems.

An important task in any estimation procedure is evaluating the quality of your estimates. In many
cases, specification of a parametric model known to contain the truth is not possible, and approaches
to inference which are robust to model misspecification are therefore needed. Two approaches to
robust inference include inference based on resampling methods and inference based on influence
curves. In practice, the use of resampling methods such as the nonparametric bootstrap [Efron, 1979,
Efron and Tibshirani, 1993], is quite common due to their generic nature and simplicity. However,
when data sets are large or when prediction methods are complex, bootstrapping can quickly become
a computationally prohibitive procedure.

In machine learning, ensemble methods are prediction methods that make use of, or combine, sev-
eral or many candidate learning algorithms to obtain better predictive performance than could be
obtained from any of the constituent algorithms alone. This boost in performance often comes with
a computational cost. Although cross-validation lends itself well to parallelization, it can still take
hours, days or even weeks to generate a cross-validated performance measure, such as cross-validated
AUC, depending on the complexity of the algorithm. Alternatively, given massive data sets, even
simple prediction methods can be computationally expensive. In cases where obtaining a single es-
timate of cross-validated AUC requires a significant amount of time and/or resources, the bootstrap
is either not an option, or at the very least, a undesirable option for obtaining variance estimates.

As a response to the computational costs of the bootstrap, variations of the bootstrap have been
developed that achieve a more desirable computational footprint, such as the “m out of n bootstrap”
[Bickel et al., 1997] and subsampling [Politis et al., 1999]. Another recent advancement that has
been made in this area is the “Bag of Little Bootstraps” (BLB) method [Kleiner et al., 2011]. Unlike
previous variations, BLB simultaneously addresses computational costs, statistical correctness and
automation, which appears to be a promising generalized method for variance estimation on massive
data sets.

Regardless of the reduction in computation that different variations of the bootstrap offer, all boot-
strapping variants require repeated estimation on some subset of the data. Using influence curves
for variance estimation, we avoid the need to fit additional models. In order to estimate variance us-
ing influence curves, you must first, unsurprisingly, calculate the influence curve for your estimator.
For complex estimators, it can be a difficult task to derive the influence curve. However, once the
derivation is complete, variance estimation is reduced to a simple and computationally negligible
calculation. This is the main motivation for our use of influence curves as a means of variance
estimation.

The main goal of this paper is to establish an influence curve based approach for estimating the
asymptotic variance of the cross-validated area under the ROC curve estimator. We first provide a
brief review of influence curve based variance estimation. We then demonstrate how to construct
confidence intervals for the risk of an estimator using this method. Our target parameter, true
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cross-validated AUC, is then defined, along with a corresponding estimator. We derive the influence
curve for the AUC estimate for both i.i.d. data and pooled repeated measures data (multiple
observations per independent sampling unit, such as a patient), and demonstrate the construction of
95% confidence intervals for these estimators. This procedure has been implemented as an R package
called cvAUC, which we describe and provide a code example for. We conclude with a simulation that
evaluates the coverage probability of the confidence intervals over data sets of varying dimension.

2 Influence curves for variance estimation

We provide a brief overview of influence curves and their relation to variance estimation. We outline
the general procedure for obtaining confidence intervals using the influence curve of an estimator.
This section serves as a gentle introduction to concepts and notation used throughout the paper.

Suppose that O ≡ O1, ..., On are i.i.d. samples from a probability distribution, P0, that is known to
be an element of a statistical model, M. Let F be some class of functions of O. Throughout this
paper, we will use the notation Pf , where P is a probability distribution, to denote

∫
f(x)dP (x). We

consider the empirical process, (P0f : f ∈ F), which is a “vector” of true means. Let Ψ : M → R
d

be a parameter of interest, and let ψ0 = Ψ(P0) ≡ Ψ(P0f : f ∈ F) be the true parameter value; ψ0 is
a function of true means. In order to assume that asymptotically linear estimators of ψ0 exist, we
must assume that the parameter Ψ is pathwise differentiable [Bickel et al., 1993].

Let MNP denote a nonparametric model that includes the empirical distribution, Pn, of O1, ..., On.
We consider the empirical process, (Pnf : f ∈ F), which is a “vector” of empirical means. Let
Ψ̂ : MNP → R

d be an estimator of ψ0 that maps the empirical distribution, Pn, or rather, a “vector”
of empirical means, into an estimate Ψ̂(Pn) ≡ Ψ̂(Pnf : f ∈ F). We assume that Ψ̂(P0) = ψ0, so
that the estimator targets the desired target parameter, ψ0. This estimate is asymptotically linear
at P0 if

Ψ̂(Pn)− Ψ̂(P0) = (Pn − P0)IC(P0) + oP (1/
√
n),

for some mean zero function IC(P0) of O: i.e., P0IC(P0) = 0. This function IC(P0) of O is called
the influence curve of the estimator Ψ̂.

Since IC(P0) is a zero mean function of O, we observe that (Pn−P0)IC(P0) =
1
n

∑n
i=1 IC(P0)(Oi)−

P0IC(P0) =
1
n

∑n
i=1 IC(P0)(Oi), which is an empirical mean of mean zero i.i.d. random variables.

So we have,

Ψ̂(Pn)− Ψ̂(P0) =
1

n

n∑
i=1

IC(P0)(Oi) + oP (1/
√
n).

By the Central Limit Theorem, we find that

√
n

(
Ψ̂(Pn)− Ψ̂(P0)

)
d→ N (0,Σ0),

where Σ0 = P0IC(P0)IC(P0)
T . This covariance matrix can be estimated with the empirical covari-

ance matrix ÎC(Oi), i = 1, ..., n where ÎC is an estimate of IC(P0). This method for establishing the
asymptotic linearity and normality of the estimator is called the functional delta method [van der
Vaart and Wellner, 1996, Gill, 1989]. The functional delta method is a generalization of the classical
delta method for finite dimensional functions of a finite set of estimators.

When our target parameter is one-dimensional, as in cross-validated AUC, we can write the following:

√
n

(
Ψ̂(Pn)− Ψ̂(P0)

)
d→ N (0,Φ2(P0)),
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where Φ2(P0) =
∫
IC(P0)(x)

2dP0(x). Let Φ
2(Pn) be an estimate of the asymptotic variance, Φ2(P0),

where Pn is the empirical distribution. For example, we could estimate Φ2(P0) by

Φ2
n = Φ2(Pn) =

1

n

n∑
i=1

IC(Pn)(Oi)
2,

however, other estimators of the variance of the influence curve can be considered. Let zr denote
the rth quantile of the standard normal distribution. It follows that for any estimate Φ2

n = Φ2(Pn)
of Φ2(P0), we have that (

Ψ̂(Pn)− z1−α/2
Φn√
n
, Ψ̂(Pn) + z1−α/2

Φn√
n

)
forms an approximate 100× (1− α)% confidence interval for ψ0 = Ψ̂(P0).

3 Cross-validated AUC as a target parameter

In this section, we formally introduce AUC. We then define the estimator for cross-validated AUC,
as well as the target that it is estimating, the true cross-validated AUC.

Consider some probability distribution, P0, that is known to be an element of a statistical model,
M. Let O = (W,Y ) ∼ P0 ∈ M, where Y is a binary outcome variable, and W represents one
or more covariates or predictor variables. Without loss of generality, we will denote Y = 1 as the
positive class and Y = 0 as the negative class, and ψ as a function that maps W into (0, 1). The
quantity, ψ(W ), is the predicted value or score of a sample. The Area Under the ROC curve can be
defined as the following:

AUC(P0, ψ) =

∫ 1

0

P0 (ψ(W ) > c | Y = 1)P0 (ψ(W ) = c | Y = 0) dc.

Alternatively, we can define AUC as

AUC(P0, ψ) = P0 (ψ(W1) > ψ(W2) | Y1 = 1, Y2 = 0) ,

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0. The quantity, AUC(P0, ψ), the true AUC,
equals the probability, conditional on sampling two independent observations where one is positive
(Y1 = 1) and the other is negative (Y2 = 0), that the predicted value (or rank) of the positive sample,
ψ(W1), is higher than the predicted value (or rank) of the negative sample, ψ(W2).

Consider O1, ..., On, i.i.d. samples from P0, such that Oi = (Wi, Yi) for each i, and let Pn denote the
empirical distribution. Let n0 be the number of observations with Y = 0 and let n1 be the number
of observations with Y = 1. In machine learning, the ψ function is what is learned by a binary
prediction algorithm using the training data. The AUC of the empirical distribution can be written
as follows:

AUC(Pn, ψ) =
1

n0n1

n∑
i=1

n∑
j=1

I(ψ(Wj) > ψ(Wi))I(Yi = 0, Yj = 1)

=
1

n0n1

n0∑
i=1

n1∑
j=1

I(ψ(Wj) > ψ(Wi)),

where I is the indicator function.

The parameter we targeting is true cross-validated AUC. We do not require that the cross-validation
be any particular type of cross-validation, such as V -fold, however, in practice, V -fold is common.

Hosted by The Berkeley Electronic Press



We will use a generalized notation to encode the data splitting procedure, where a binary indicator
vector is used to specify which observations belong to the validation sample at each iteration of the
cross-validation process.

Let Bn ∈ {0, 1}n be a random split and let P 1
n,Bn

and P 0
n,Bn

be the empirical distributions of the
validation {i : Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively. We assume that Bn has
only a finite number of values uniformly in n, as in V -fold cross-validation.

Recall that O1, ..., On ∼ P0 ∈ M and let Ψ : M → Ψ. We denote the target parameter as
ψ0 = Ψ(P0). Let MNP denote a nonparametric model that includes the empirical distribution, Pn,
of O1, ..., On and let Ψ̂ : MNP → R be an estimator of ψ0. We assume that Ψ̂(P0) = ψ0. Given
a random split, Bn, we define ψBn

= Ψ̂(P 0
n,Bn

), which is the estimator applied to the empirical
distribution of the observations contained in the training sample, {i : Bn(i) = 0}.
Let B1

n, ..., B
V
n be the collection of random splits that define our cross-validation procedure. We

will walk through the case of V -fold cross-validation as an example. In the case of V -fold cross-
validation, each of the Bv

n encodes a single fold; the vth validation fold is {i : Bv
n(i) = 1}, and

the remaining samples belong to the vth training sample, {i : Bv
n(i) = 0}. For each Bv

n, we define
ψBv

n
= Ψ̂(P 0

n,Bv
n
), where P 0

n,Bv
n
is the empirical distribution of the observations contained in the vth

training sample. The function ψBv
n
, which is learned from the vth training sample, will be used to

generate predicted values for the observations in the vth validation fold. We define nv
1 and nv

0 to be
the number of positive and negative samples in the vth validation fold. We note that nv

1 and nv
0 are

random variables that depend on the value of both Bv
n and {Yi : B

v
n(i) = 1}. Formally,

nv
1 =

n∑
i=1

I(Yi = 1)I(Bv
n(i) = 1)

nv
0 =

n∑
i=1

I(Yi = 0)I(Bv
n(i) = 1)

The AUC for a single validation fold, {i : Bv
n(i) = 1}, is

AUC(P 1
n,Bv

n
, ψBv

n
) =

1

nv
0n

v
1

n∑
i=1

n∑
j=1

I(ψBv
n
(Wj) > ψBv

n
(Wi))I(Yi = 0, Yj = 1)I(Bv

n(i) = Bv
n(j) = 1).

Then the V -fold cross-validated AUC estimator is defined as

EBn
AUC(P 1

n,Bn
, ψBn

) =
1

V

V∑
v=1

AUC(P 1
n,Bn

, ψBv
n
)

=
1

V

V∑
v=1

⎧⎨⎩ 1

nv
0n

v
1

n∑
i=1

n∑
j=1

I(ψBv
n
(Wj) > ψBv

n
(Wi))I(Yi = 0, Yj = 1)I(Bv

n(i) = Bv
n(j) = 1)

⎫⎬⎭ .

The target, ψ0, of the V -fold cross-validated AUC estimator is defined as

EBnAUC(P0, ψBn) =
1

V

V∑
v=1

AUC(P0, ψBv
n
)

=
1

V

V∑
v=1

P0

(
ψBv

n
(W1) > ψBv

n
(W2) | Y1 = 1, Y2 = 0

)
,

where (W1, Y1) and (W2, Y2) are i.i.d. samples from P0.
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In other words, our target parameter, the true cross-validated AUC, corresponds to fitting the
prediction function on each training set, evaluating its true risk (or true probability of correctly
ranking two randomly selected observations, where one is a positive sample and the other a negative
sample), and taking the average of these true risks across the validation sets. The target parameter
thus describes the true classification performance of a predictor fit using the training data. Our
estimator of this quantity is based on fitting the prediction function using observations in each
training set, estimating its risk using observations in the corresponding the validation sets, and
taking the average of these estimates across validation sets. We now wish to estimate the variance
of this estimator, and in particular, to construct confidence intervals.

4 Confidence intervals for the risk of an estimator

In order to construct valid confidence intervals for our cross-validated AUC estimator, we must first
establish its asymptotic normality. In this section, we present a general theorem that establishes the
asymptotic normality of, and provides the influence curve for, the cross-validated risk of an estimator.
This provides a general template for the construction of confidence intervals for the cross-validated
risk of an estimator. In the following section, we can then apply these results using AUC as a loss
function to derive an influence curve based estimate of the variance of our cross-validated AUC
estimator.

Let O ∼ P0 ∈ M and let Ψ : M → Ψ be an infinite dimensional target parameter. Let L(ψ)(O)
be a loss function such that ψ0 = argminψ P0L(ψ). Let Ψ̂ : MNP → Ψ be an estimator, and

ψn = Ψ̂(Pn) ∈ Ψ is the estimate obtained by applying the estimator to the empirical distribution
Pn of the i.i.d. sample O1, ..., On. The following theorem establishes asymptotic linearity of the
cross-validated risk of an estimator under specific conditions and provides a consistent estimator
of the asymptotic variance of this estimator. Once an estimate for asymptotic variance has been
derived, we construct a 95% confidence interval for the cross-validated risk estimate.

Theorem 1. Let Bn ∈ {0, 1}n be a random split and let P 1
n,Bn

and P 0
n,Bn

be the empirical distribu-
tions of the validation {i : Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively. We assume
that Bn has only a finite number of values uniformly in n, as in V -fold cross-validation. We assume
that p =

∑
i Bn(i)/n is bounded away from a δ > 0, with probability 1. Define

R̂(Ψ̂, Pn) = EBnP
1
n,Bn

L(Ψ̂(P 0
n,Bn

)),

where P 1
n,Bn

f ≡ EP 1
n,Bn

f .

We also define a target of this cross-validated risk as

R̃(Ψ̂, Pn) = EBn
P0L(Ψ̂(P 0

n,Bn
)),

where P0f ≡ EP0
f .

We assume that there exists a ψ1 ∈ Ψ so that P0

{
L(Ψ̂(Pn))− L(ψ1)

}2

converges to zero in prob-

ability as n → ∞. It is assumed that supψ∈Ψ supO |L(ψ)(O)| < ∞, where the supremum over O is
over a support of P0.

Then,

R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn) =
1

n

n∑
i=1

{L(ψ1)(Oi)− P0L(ψ1)}+ oP (1/
√
n).
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In particular,
√
n
(
R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn)

)
converges to a normal distribution with mean zero and

variance
σ2 = P0 {L(ψ1)(Oi)− P0L(ψ1)}2 .

Thus, one can construct an asymptotically 0.95-confidence interval for R̃(Ψ̂, Pn) given by

R̂(Ψ̂, Pn)± 1.96
σn√
n
,

where σ2
n is a consistent estimator of σ2.

A consistent estimator of σ2 is obtained as

σ2
n = EBn

P 1
n,Bn

{
L
(
Ψ̂(P 0

n,Bn
)
)
− R̂(Ψ̂, Pn)

}2

.

Proof. First we note that:

R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn) = EBn

(
P 1
n,Bn

− P0

)
L
(
Ψ̂(P 0

n,Bn
)
)

= EBn

(
P 1
n,Bn

− P0

)
L(ψ1) + EBn

(
P 1
n,Bn

− P0

){
L
(
Ψ̂(P 0

n,Bn
)
)
− L(ψ1)

}
The second term is shown to be oP (1/

√
n) [van der Laan and Rose, 2011] (see Lemma 27.6 and

27.7) and corresponding technical report [Zheng and van der Laan, 2011], involving the application
of empirical process theory [van der Vaart and Wellner, 1996] (see Lemma 2.14.1). The first term
equals

√
n (Pn − P0)L(ψ1). This proves the first statement.

By the same proof as in [van der Laan and Rose, 2011], mentioned above, it follows that R̂(Ψ̂, Pn)

converges to P0L(ψ1) as n → ∞ and that EBn
P 1
n,Bn

{
L
(
Ψ̂(P 0

n,Bn
)
)
− R̂(Ψ̂, Pn)

}2

converges to

P0 {L(ψ1)− P0L(ψ1)}2, which proves that σ2
n is a consistent estimator for σ2.

5 Confidence intervals for the AUC of an estimator

Now we apply the results from the previous section, using AUC as the loss function. We derive the
influence curve for the AUC estimator and derive influence curve based confidence intervals for the
cross-validated AUC. Then we provide a description of the practical construction of the confidence
intervals from an i.i.d. data sample.

We consider the identical scenario, where O = (W,Y ) ∼ P0 ∈ M, where Y is binary, and W
represents one or more variables. In a binary classification problem, Y is the outcome and W
represents the covariates or predictor variables. In the case where Y ∈ {0, 1}, we let Ψ : M → Ψ
be an infinite dimensional target parameter that maps W into (0,1). We let Ψ̂ : MNP → Ψ be an
estimator, and ψn = Ψ̂(Pn) ∈ Ψ is the estimate obtained by applying the estimator to the empirical
distribution Pn of the i.i.d. sample O1, ..., On.

In order to derive influence curve based confidence intervals for cross-validated AUC, we must first
show that AUC(Pn, ψ) is an asymptotically linear estimator of AUC(P0, ψ), where ψ ∈ Ψ. To show
this, we must prove that

AUC(Pn, ψ)−AUC(P0, ψ) = (Pn − P0)ICAUC(P0, ψ) + oP (1/
√
n),

where ICAUC(P0, ψ) is the influence curve for the Area Under the Curve estimator. Then, as in the
previous theorem, we use empirical process theory to analyze the cross-validated empirical process
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terms as in [Zheng and van der Laan, 2011]. Using the notation that was defined in Section 3, it
follows that

EBn
AUC(P 1

n,Bn
, Ψ̂(P 0

n,Bn
))− EBn

AUC(P0, Ψ̂(P 0
n,Bn

))

= EBn
(P 1

n,Bn
− P0)ICAUC(P0, Ψ̂(P 0

n,Bn
)) + oP (1/

√
n)

= EBn(P
1
n,Bn

− P0)ICAUC(P0, ψ1)

+ EBn(P
1
n,Bn

− P0)
{
ICAUC(P0, Ψ̂(P 0

n,Bn
))− ICAUC(P0, ψ1)

}
+ oP (1/

√
n)

= (Pn − P0)ICAUC(P0, ψ1) + oP (1/
√
n),

where the influence curve is given by

ICAUC(P0, ψ)(O) =
I(Y = 1)

P0(Y = 1)
P0 (ψ(W ) < x | Y = 0) |x=ψ(W )

+
I(Y = 0)

P0(Y = 0)
P0 (ψ(W ) > x | Y = 1) |x=ψ(W )

−
{

I(Y = 0)

P0(Y = 0)
+

I(Y = 1)

P0(Y = 1)

}
AUC(P0, ψ).

We have shown that AUC(Pn, ψ) is indeed an asymptotically linear estimator of AUC(P0, ψ).

The following theorem is the analogue to Theorem 1 from the previous section, using AUC as the
loss function. We begin by defining the influence curve for AUC, as given above. We define the
cross-validated AUC estimator, along with the target of this estimator, true cross-validated AUC.
As in Theorem 1, we derive an estimate for the asymptotic variance of cross-validated AUC and
construct a 95% confidence interval.

Theorem 2. Let AUC(P0, ψ) =
∫ 1

0
P0 (ψ(W ) > c | Y = 1)P0 (ψ(W ) = c | Y = 0) dc. The efficient

influence curve AUC(P0, ψ) for a nonparametric model for P0 is given by

ICAUC(P0, ψ)(O) =
I(Y = 1)

P0(Y = 1)
P0 (ψ(W ) < x | Y = 0) |x=ψ(W )

+
I(Y = 0)

P0(Y = 0)
P0 (ψ(W ) > x | Y = 1) |x=ψ(W )

−
{

I(Y = 0)

P0(Y = 0)
+

I(Y = 1)

P0(Y = 1)

}
AUC(P0, ψ).

For each ψ, the empirical AUC(Pn, ψ) is asymptotically linear with influence curve ICAUC(P0, ψ).

Let Bn ∈ {0, 1}n be a random split and let P 1
n,Bn

and P 0
n,Bn

be the empirical distributions of the
validation {i : Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively. We assume that Bn

has only a finite number of values uniformly in n, as in V -fold cross-validation. We assume that
p =

∑
i Bn(i)/n is bounded away from a δ > 0, with probability 1. Define the cross-validated area

under the ROC curve as
R̂(Ψ̂, Pn) = EBn

AUC(P 1
n,Bn

, Ψ̂(P 0
n,Bn

)).

We also define the target of this cross-validated area under the ROC curve as

R̃(Ψ̂, Pn) = EBn
AUC(P0, Ψ̂(P 0

n,Bn
)).

We assume that there exists a ψ1 ∈ Ψ so that P0

{
ICAUC(P0, Ψ̂(Pn))− ICAUC(P0, ψ1)

}2

converges

to zero in probability as n → ∞. We also assume that supψ∈Ψ supO |ICAUC(P0, ψ)(O)| < ∞, where
the supremum over O is over a support of P0. Then,
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R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn) =
1

n

n∑
i=1

ICAUC(Oi) + oP (1/
√
n).

In particular,
√
n
(
R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn)

)
converges to a normal distribution with mean zero and

variance
σ2 = P0 {ICAUC(P0, ψ1)}2 .

Thus, one can construct an asymptotically 0.95-confidence interval for R̃(Ψ̂, Pn) given by

R̂(Ψ̂, Pn)± 1.96
σn√
n

where σ2
n is a consistent estimator of σ2.

A consistent estimator of σ2 is obtained as

σ2
n = EBn

P 1
n,Bn

{
ICAUC(P

1
n,Bn

, Ψ̂(P 0
n,Bn

))
}2

.

In the estimate for σ2, we estimate the unknown conditional probabilities of the influence curve
ICAUC with the empirical distribution of the validation sample, so that P 1

n,Bn
(ψ(W ) > x | Y = 0)

will be consistent at ψ = Ψ̂(P 0
n,Bn

) under no conditions on the estimator Ψ̂. This is why we replaced
P0 in ICAUC(P0, ψ) by the empirical distribution of the validation sample. However, the probabilities
P0(Y = 1) and P0(Y = 0) can be estimated using the whole sample.

5.1 A practical implementation for i.i.d. data

For further clarity, we provide a description of the practical construction of the confidence intervals
from an i.i.d. data set, as implemented in our software package. Consider an i.i.d. sample of
size n with a binary outcome Y . For each observation, Oi = (Wi, Yi), we have a d-dimensional
numeric vector Wi and a binary outcome, Yi. Without loss of generality, let Yi ∈ {0, 1}, for all
i = 1, ..., n, however, Y can be any ordered two-class variable. In this example, we will use V -fold
cross-validation and define the the splits as B1

n, ...., B
V
n , as defined previously. Recall that P 1

n,Bv
n
and

P 0
n,Bv

n
are the empirical distributions of the vth validation and training sample, respectively and Pn

is the empirical distribution of the whole data sample.

As in Section 3, we calculate the V -fold cross-validated AUC estimator as

R̂(Ψ̂, Pn) = EBnAUC(P 1
n,Bn

, ψBn)

=
1

V

V∑
v=1

AUC(P 1
n,Bn

, ψBv
n
)

=
1

V

V∑
v=1

⎧⎨⎩ 1

nv
0n

v
1

n∑
i=1

n∑
j=1

I(ψBv
n
(Wj) > ψBv

n
(Wi))I(Yi = 0, Yj = 1)I(Bv

n(i) = Bv
n(j) = 1)

⎫⎬⎭ .

In order to construct influence curve based confidence intervals for our V -fold cross-validated AUC
estimator, we estimate the asymptotic variance as:

σ2
n = EBn

P 1
n,Bn

{
ICAUC(P

1
n,Bn

, Ψ̂(P 0
n,Bn

))
}2

=
1

V

V∑
v=1

{
1

n

n∑
i=1

{
ICAUC(P

1
n,Bv

n
, Ψ̂(P 0

n,Bv
n
))(Oi)

}2

I(Bv
n(i) = 1)

}
,
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where ψBv
n
= Ψ̂(P 0

n,Bv
n
), and

ICAUC(P
1
n,Bv

n
, Ψ̂(P 0

n,Bv
n
))(Oi) =

I(Yi = 1)

Pn(Y = 1)
P 1
n,Bv

n

(
ψBv

n
(W ) < x | Y = 0

) |x=ψBv
n
(Wi)

+
I(Yi = 0)

Pn(Y = 0)
P 1
n,Bv

n

(
ψBv

n
(W ) > x | Y = 1

) |x=ψBv
n
(Wi)

−
{

I(Yi = 0)

Pn(Y = 0)
+

I(Yi = 1)

Pn(Y = 1)

}
AUC(P 1

n,Bn
, ψBv

n
).

Despite the density of the notation above, each of the components in the influence curve can be
calculated very easily. Fix v ∈ {1, ..., V } and i ∈ {1, ..., n}, and we will demonstrate how to calculate
the quantity, ICAUC(P

1
n,Bv

n
, Ψ̂(P 0

n,Bv
n
))(Oi).

The terms, Pn(Y = 1) ≡ 1
n

∑n
j=1 I(Yj = 1) and Pn(Y = 0) ≡ 1

n

∑n
j=1 I(Yj = 0), are the proportions

of positive and negative samples, respectively, in the empirical distribution.

Let nv
1 =

∑n
j=1 I(Yj = 1)I(Bv

n(j) = 1) be the number of positive samples in the vth validation sample

and let nv
0 =

∑n
j=1 I(Yj = 0)I(Bv

n(j) = 1) be the number of negative samples in the vth validation

sample. Also, recall that ψBv
n
is the function learned by the vth training sample, which maps a

vector, W , of covariates, to a predicted value, ψBv
n
(W ) ∈ (0, 1). For a given sample, Oi = (Wi, Yi),

we calculate the predicted value, ψBv
n
(Wi), and note whether Yi is labeled as positive (Yi = 1) or

negative (Yi = 0). Above, each of the terms in the expression for the influence curve contains an
indicator function, conditional on the value of Yi. Therefore, given the value of Yi, we need only to
evaluate the active part of the expression.

When Yi = 1, we need to evaluate:

P 1
n,Bv

n

(
ψBv

n
(W ) < x | Y = 0

) |x=ψBv
n
(Wi) =

1

nv
0

n∑
j=1

I(Wj < ψBv
n
(Wi))I(Yj = 0)I(Bv

n(j) = 1)

This sum counts the number of negative samples in the validation sample that have a predicted
value less than ψBv

n
(Wi), the predicted value for sample i. Then, we divide by the total number of

negative samples in the validation sample.

Similarly, when Yi = 0, we need to evaluate:

P 1
n,Bv

n

(
ψBv

n
(W ) > x | Y = 1

) |x=ψBv
n
(Wi) =

1

nv
0

n∑
j=1

I(Wj > ψBv
n
(Wi))I(Yj = 1)I(Bv

n(j) = 1)

This sum counts the number of positive samples in the validation sample that have a predicted value
greater than ψBv

n
(Wi), the predicted value for sample i. Then, we divide by the total number of

positive samples in the validation sample.

The remaining term in the expression for the influence curve is AUC(P 1
n,Bn

, ψBv
n
) multiplied by

inverse probability of Pn(Y = 1) or Pn(Y = 0), depending on the value of the indicator function at
Yi. As shown in Section 3, the value of AUC(P 1

n,Bn
, ψBv

n
) can be calculated directly as follows:

AUC(P 1
n,Bv

n
, ψBv

n
) =

1

nv
0n

v
1

n∑
k=1

n∑
j=1

I(ψBv
n
(Wj) > ψBv

n
(Wk))I(Yk = 0, Yj = 1)I(Bv

n(k) = Bv
n(j) = 1).

Thus, for fixed v ∈ {1, ..., V } and i ∈ {1, ..., n}, we have demonstrated how to calculate the quantity,
ICAUC(P

1
n,Bv

n
, Ψ̂(P 0

n,Bv
n
))(Oi), from an i.i.d. data set. Then we square this term and sum over i.i.d.

Hosted by The Berkeley Electronic Press



samples, i, and cross-validation folds, v, to get

σ2
n =

1

V

V∑
v=1

{
1

n

n∑
i=1

{
ICAUC(P

1
n,Bv

n
, Ψ̂(P 0

n,Bv
n
))(Oi)

}2

I(Bv
n(i) = 1)

}
,

an estimate for the asymptotic variance of R̂(Ψ̂, Pn), our V -fold cross-validated AUC estimator. The
target of this estimator is

R̃(Ψ̂, Pn) = EBnAUC(P0, Ψ̂(P 0
n,Bn

)) =
1

V

V∑
v=1

AUC(P0, Ψ̂(P 0
n,Bv

n
)),

the true V -fold cross-validated AUC. Then, as in Theorem 2, one can construct an asymptotically
0.95-confidence interval for R̃(Ψ̂, Pn) as

R̂(Ψ̂, Pn)± 1.96
σn√
n
.

6 Generalization to the cross-validated AUC for pooled re-
peated measures data

Above, we derived a consistent, influence curve based, estimator of the asymptotic variance of cross-
validated AUC for the simple setting in which have n i.i.d. observations. Each of these observations,
Oi has a predictor variable, Wi, coupled with a binary outcome variable, Yi, that we wish to predict.
Now we consider the common setting in which one has repeated measures for each observation. This
data structure arises frequently in medical studies, where each patient is frequently measured at
multiple time points. We focus on the case where the order of these measures is not meaningful, and
one simply wishes to obtain a single summary of classifier performance pooled over all measures.
We begin by providing a formal definition of the target parameter, the pooled cross-validated AUC,
for such cases. We then extend the results presented in the previous sections to derive an influence
curve based variance estimator for the cross-validated AUC of a pooled repeated measures data set.

As before, we let P0 ∈ M and Ψ : M → Ψ. We denote the target parameter as ψ0 = Ψ(P0).
Let O = (W (t), Y (t) : t ∈ τ) ∼ P0 for a possibly random index set τ ⊂ {1, ..., T}. Here Y (t) is
binary for each t. We observe n i.i.d. copies Oi = (Wi(t), Yi(t) : t ∈ τi), i = 1, ..., n of O. Let MNP

denote a nonparametric model that includes the empirical distribution, Pn, of O1, ..., On and let
Ψ̂ : MNP → R be an estimator of ψ0. We assume that Ψ̂(P0) = ψ0. We consider the case where t
is not a meaningful index, and that either ψ0(t, w) = E0 (Y (t) | W (t) = w) does not depend on t, or
that the investigator has no interest in understanding the dependence on t.

Consider the distribution,

P̄0(w, y) =
1

E0|τ |
T∑

t=1

P0(t ∈ τ)P0 (W (t) = w, Y (t) = y | t ∈ τ) .

This represents the limit distribution of the empirical distribution P̄n of the pooled sample:

P̄n(w, y) =
1∑n

i=1 |τi|
n∑

i=1

∑
t∈τi

I (Wi(t) = w, Yi(t) = y) .

One could define as a measure of interest for evaluation a predictor ψ, the area under the ROC curve
one would obtain if one treats the pooled sample as N i.i.d. observations. That is, we define
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AUC(P̄0, ψ) =

∫ 1

0

P̄0 (ψ(W ) > c | Y = 1) P̄0 (ψ(W ) = c | Y = 0) dc,

where, without loss of generality, we let the positive class be represented by Y = 1 and the negative
class be represented by Y = 0.

The AUC for the empirical distribution of the pooled sample can be expressed explicitly as follows.
Let n0 =

∑n
i=1

∑
t∈τi

I(Yi(t) = 0) and let n1 =
∑n

j=1

∑
s∈τj

I(Yj(s) = 1). Then we have

AUC(P̄n, ψ) =
1

n0n1

n∑
i=1

∑
t∈τi

n∑
j=1

∑
s∈τj

I(ψ(Wj(s)) > ψ(Wi(t)))I(Yi(t) = 0, Yj(s) = 1).

Now we consider the cross-validated AUC of a pooled repeated measures data set. Let Bn ∈ {0, 1}n
be a random split and let P̄ 1

n,Bn
and P̄ 0

n,Bn
be the empirical distributions of the pooled data within

the validation {i : Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively. We assume that
Bn has only a finite number of values uniformly in n, as in V -fold cross-validation. Given a random
split, Bn, we define ψBn = Ψ̂(P̄ 0

n,Bn
).

As in the i.i.d. example in the previous section, we will walk through the case of V -fold cross-
validation. Let B1

n, ..., B
V
n be the collection of random splits that define our cross-validation pro-

cedure. In the case of V -fold cross-validation, each of the Bv
n encodes a single fold; the vth val-

idation fold is {i : Bv
n(i) = 1}, and the remaining samples belong to the vth training sample,

{i : Bv
n(i) = 0}. Note that since our independent units are collections of pooled time points,

Oi = (Wi(t), Yi(t) : t ∈ τi), that all pooled samples from each i.i.d. sample, Oi will be contained
within the same validation fold.

For each Bv
n, we define ψBv

n
= Ψ̂(P̄ 0

n,Bv
n
), where P̄ 0

n,Bv
n
is the empirical distribution of the pooled

data contained in the vth training sample. The function ψBv
n
, which is learned from the vth training

sample, will be used to generate predicted values for the observations in the vth validation fold. We
define nv

1 and nv
0 to be the number of positive and negative samples in the vth validation fold. We

note that nv
1 and nv

0 are random variables that depend on the value of both Bv
n and {Yi : B

v
n(i) = 1}.

Formally,

nv
1 =

n∑
i=1

∑
t∈τi

I(Yi(t) = 1)I(Bv
n(i) = 1)

nv
0 =

n∑
i=1

∑
t∈τi

I(Yi(t) = 0)I(Bv
n(i) = 1)

The AUC for a single validation fold, {i : Bv
n(i) = 1}, for pooled repeated measures data, is

AUC(P̄ 1
n,Bv

n
, ψBv

n
) =

1

nv
0n

v
1

n∑
i=1

∑
t∈τi

n∑
j=1

∑
s∈τj

I(ψBv
n
(Wj(s)) > ψBv

n
(Wi(t)))I(Yi(t) = 0, Yj(s) = 1)I(Bv

n(i) = Bv
n(j) = 1).

Then the V -fold cross-validated AUC estimator, for pooled repeated measures data, is defined as

EBnAUC(P̄ 1
n,Bn

, ψBn) =
1

V

V∑
v=1

AUC(P̄ 1
n,Bv

n
, ψBv

n
)

=
1

V

V∑
v=1

⎧⎨
⎩

1

nv
0n

v
1

n∑
i=1

∑
t∈τi

n∑
j=1

∑
s∈τj

I(ψBv
n
(Wj(s)) > ψBv

n
(Wi(s)))I(Yi(t) = 0, Yj(s) = 1)I(Bv

n(i) = Bv
n(j) = 1)

⎫⎬
⎭ .
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We also define the target, ψ0, of the V -fold cross-validated AUC estimate as

EBn
AUC(P̄0, ψBn

) =
1

V

V∑
v=1

AUC(P̄0, ψBv
n
)

=
1

V

V∑
v=1

P̄0

(
ψBv

n
(W1) > ψBv

n
(W2) | Y1 = 1, Y2 = 0

)
,

where (W1, Y1) ≡ (W1(t), Y1(t)) and (W2, Y2) ≡ (W2(t), Y2(t)) are single time-point observations.

The following theorem is the pooled repeated measures analogue to Theorem 2, where
O = (W (t), Y (t) : t ∈ τ) ∼ P0 for a possibly random index set τ ⊂ {1, ..., T}. Below we let
(W,Y ) ≡ (W (t), Y (t)) denote a single time-point observation, for some t ∈ τ .

Theorem 3. The efficient influence curve of AUC(P̄0, ψ) for a nonparametric model for P0 is given
by:

ICAUC(P̄0, ψ)(O) =
1

E0|τ |
∑
t∈τ

ICAUC(P̄0, ψ)(W (t), Y (t)),

where

ICAUC(P̄0, ψ)(W,Y ) =
I(Y = 1)

P̄0(Y = 1)
P̄0 (ψ(W ) < x | Y = 0) |x=ψ(W )

+
I(Y = 0)

P̄0(Y = 0)
P̄0 (ψ(W ) > x | Y = 1) |x=ψ(W )

−
{

I(Y = 0)

P̄0(Y = 0)
+

I(Y = 1)

P̄0(Y = 1)

}
AUC(P̄0, ψ).

For each ψ, the estimator AUC(P̄n, ψ) obtained by plugging in the pooled empirical distribution P̄0

is asymptotically linear with influence curve ICAUC(P̄0, ψ).

Let Bn ∈ {0, 1}n be a random split and let P 1
n,Bn

and P 0
n,Bn

be the empirical distributions of the

validation {i : Bn(i) = 1} and training sample {i : Bn(i) = 0}, respectively. Let P̄ 1
n,Bn

be the
empirical distribution of the pooled data within the validation sample. We assume that Bn has
only a finite number of values uniformly in n, as in V -fold cross-validation. We assume that p =∑

i Bn(i)/n is bounded away from a δ > 0, with probability 1. Define the cross-validated area under
the ROC curve as

R̂(Ψ̂, Pn) = EBnAUC(P̄ 1
n,Bn

, Ψ̂(P 0
n,Bn

)).

We also define the target of this cross-validated area under the ROC curve as

R̃(Ψ̂, Pn) = EBn
AUC(P̄0, Ψ̂(P 0

n,Bn
)).

We assume that there exists a ψ1 ∈ Ψ so that P0

{
ICAUC(P0, Ψ̂(Pn))− ICAUC(P0, ψ1)

}2

converges

to zero in probability as n → ∞. We also assume that supψ∈Ψ supO |ICAUC(P0, ψ)(O)| < ∞, where
the supremum over O is over a support of P0. Then,

R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn) =
1

n

n∑
i=1

ICAUC(P̄0, ψ1)(Oi) + oP (1/
√
n).

In particular,
√
n
(
R̂(Ψ̂, Pn)− R̃(Ψ̂, Pn)

)
converges to a normal distribution with mean zero and

variance
σ2 = P0

{
ICAUC(P̄0, ψ1)

}2
.
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Thus, one can construct an asymptotically 0.95-confidence interval for R̃(Ψ̂, Pn) given by

R̂(Ψ̂, Pn)± 1.96
σn√
n

where σ2
n is a consistent estimator of σ2.

A consistent estimator of σ2 is obtained as

σ2
n = EBn

P 1
n,Bn

{
ICAUC(P̄

1
n,Bn

, Ψ̂(P 0
n,Bn

))
}2

.

7 Software

We implemented the construction of influence curve based confidence intervals for cross-validated
AUC on i.i.d. data as well as pooled repeated measures data, as an R package. The package, called
cvAUC, depends on functionality from the ROCR package [Sing et al., 2005] to calculate the area under
the ROC curve.

For each observation, the user provides a predicted value, as generated by a binary prediction
algorithm, and a corresponding binary class label. Using the notation above, the user must provide
the values ψ(W ) and Y for each observation. As in the ROCR package, the labels can be supplied
as ordered factors as opposed to numeric values, if desired. The user must also indicate which
observations belong to each cross-validation split, and there are multiple options for encoding this
information. Since V -fold cross-validation is the most commonly used type of cross-validation, we
will provide an example below using V -fold cross-validation. To avoid bias in the cross-validated
AUC estimate in the pooled repeated measures setting, repeated measures from the independent
sampling unit, such as a patient, must all belong to the same validation fold.

The main functions of the package are ci.cvAUC and ci.pooled.cvAUC, which report cross-validated
AUC and calculate corresponding confidence intervals (confidence level supplied by the user) for i.i.d.
and pooled repeated measures data. Below is an example of how one might use the package.

7.1 Example using i.i.d. data

The package is designed to be used after predicted values are generated for all observations in each
fold. However, we will demonstrate a self-contained example, from start to finish, to provide context.
We begin by creating the predicted values and folds object that will be passed as arguments to the
ci.cvAUC function. The following steps outline the process of generating these data objects.

1. Load a data set with a binary outcome. For the i.i.d. case we use a simulated data set of 500
observations, included with the package, of graduate admissions data. There are five predictor
variables and the outcome is admitted vs. not admitted.

2. Divide the indices randomly into 10 folds, stratifying by outcome. Stratification is not necessary,
but is commonly performed in order to create validation folds with similar distributions. Store
this information in a list called folds.

3. Define a function to fit a model on the training data and to generate predicted values for the
observations in the validation fold, for a single iteration of the cross-validation procedure. We
use a logistic regression fit.

4. Apply this function across all folds to generate predicted values for each validation fold. The
concatenated version of these predicted values is stored in vector called predictions. The
outcome vector, Y , is the labels argument.

Hosted by The Berkeley Electronic Press



Once we have created the predictions, labels, and folds objects, we can use the
ci.cvAUC(prediction, labels, folds, confidence=0.95) function to generate a 10-fold cross-
validated AUC estimate with a 95% confidence interval.

R code:

iid_example <- function(data, V=10){
require(cvAUC)
.cvFolds <- function(Y, V){ #Create CV folds (stratify by outcome)

Y0 <- split(sample(which(Y==0)), rep(1:V, length=length(which(Y==0))))
Y1 <- split(sample(which(Y==1)), rep(1:V, length=length(which(Y==1))))
folds <- vector("list", length=V)
for (v in seq(V)) {folds[[v]] <- c(Y0[[v]], Y1[[v]])}
return(folds)

}
.doFit <- function(v, folds, data){ #Train/test glm for each fold

fit <- glm(Y~., data=data[-folds[[v]],], family=binomial)
pred <- predict(fit, newdata=data[folds[[v]],], type="response")
return(pred)

}
folds <- .cvFolds(Y=data$Y, V=V) #Create folds
predictions <- unlist(sapply(seq(V), .doFit, folds=folds, data=data)) #CV train/predict
predictions[unlist(folds)] <- predictions #Re-order pred values
# Get CV AUC and confidence interval
out <- ci.cvAUC(predictions=predictions, labels=data$Y, folds=folds, confidence=0.95)
return(out)

}

# Load data
library(cvAUC)
data(admissions)

# Get performance
set.seed(1)
out <- iid_example(data=admissions, V=10)

The output is given as follows:

> out
$cvAUC
[1] 0.9046473

$se
[1] 0.01620238

$ci
[1] 0.8728913 0.9364034

$confidence
[1] 0.95

Therefore, we have estimated cross-validated AUC as 0.901 with a 95% confidence interval approxi-
mately equal to [0.873, 0.936]. The system runtime for the ci.cvAUC step in the example above was
less than 0.001 seconds on a on a machine with 8GB of RAM. Although this data set is relatively
small, these results demonstrate the efficiency of influence curve based variance estimation. More
information and code examples, including the example above, can be found in the user manual for
the package. The package is available at: http://www.stat.berkeley.edu/ laan/Software/index.html,
and will be available on CRAN.

8 Coverage Probability

In this section, we implement a simulation to demonstrate how the coverage probability of our
influence curve based confidence intervals is affected by the adaptability of our estimator. The
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coverage probability of a confidence interval is the proportion of the time, over repetitions of the
identical experiment, that the interval contains the true value of interest. Our true value of interest
is true cross-validated AUC. The coverage of influence curve based confidence intervals relies on
the normal limit distribution, thus the larger the number of covariates, the larger the sample size
required for the normal distribution to provide a good approximation of the true distribution of the
estimator. In the simulation below, the number of observations, n, is fixed, however we experiment
with an increasing number of covariates, k. As we increase the number of covariates, the number
of main terms in our linear model increases, thus making our estimator more adaptive. This can
result in overfitting and so coverage will suffer accordingly. The simulation is included as a function
within the cvAUC package and is flexible, so that the user can specify different parameters from the
ones that we use here.

8.1 Simulation

Let k represent the dimension of a multivariate normal distribution. Let μ be a k-dimensional vector
of zeros, let ν be a k-dimensional vector of ones, and let Σ be the k-dimensional identity matrix. For
each value of k, we generated 100,000 observations from Nk(μ,Σ), and for each these observations,
we let Y = 0. We then generated 100,000 observations from Nk(ν,Σ) and let Y = 1 for each these
observations. We consider these 200,000 k-dimensional points with binary outcome Y to represent
our true data distribution, P0. We note that our target parameter, true cross-validated AUC, is
itself random, but that it represents a true target. We are interested in the confidence interval
that contains this random target 95% of the time. The samples were generated using the mvrnorm
function of the R package, MASS [Venables and Ripley, 2002].

To calculate the coverage probability of our influence curve based confidence intervals, we generate
1,000 confidence intervals and report the proportion of times that the confidence interval contained
the true CV AUC. For each iteration, we sample n = 1000 points from the same distribution as our
population data (500 points from Nk(μ,Σ) and 500 points from Nk(ν,Σ) to create a binary labeled
sample of size n = 1000).

We perform 10-fold cross-validation by splitting these n observations into 10 validation folds, strat-
ifying by outcome, Y , as is common with a binary outcome. For each of the 10 validation folds, we
define a corresponding training sample, which is the remainder of the observations not contained
within the validation sample. As we have mentioned previously, the cross-validation procedure is not
required to be V -fold, however it is a common choice in practice and is convenient for demonstration
purposes. For each validation fold, we train a logistic regression fit using the observations from the
remaining 9 folds. Using the fit model, we then generate predictions for each of the samples in the
validation fold and calculate the empirical AUC. We will call this the fold AUC. We also calculate
the true AUC by generating predicted values for all of the 200,000 data points in our population
data and calculating the empirical AUC among this distribution.

This process is repeated for each of the 10 validation folds, at which point we average the fold AUCs
to get the estimate for cross-validated AUC. We also average the 10 true AUCs to get the true
cross-validated AUC. We use the ci.cvAUC function from our cvAUC R package to calculate a 95%
confidence interval for our CV AUC estimate. We note whether the true CV AUC falls within the
confidence interval.

For each value of k ∈ {5, 10, 20, 50, 60, 70, 80, 90, 100}, this process is repeated 1,000 times to obtain
an estimate of the coverage probability of our confidence intervals, indexed by k. The coverage
probability is the proportion times that the true CV AUC fell within our confidence interval. For
95% confidence intervals, we expect the coverage probability to be close to 0.95. The coverage
probabilities for each of k is shown Figure 1.

The results of the simulation indicate that for a sample size of n = 1000, when k ≤ 70, the influence
curve derived confidence intervals achieve close to a 0.95 coverage probability. However, for k > 70,
we see a reduction in coverage.
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Figure 1: Coverage Probabilities, indexed by k, the number of covariates.

9 Summary

The cross-validated AUC represents an attractive and commonly used measure of performance in
binary classification problems. However, resampling based approaches to constructing confidence
intervals for this quantity are often computationally infeasible in real data sets. In this paper, we
established the asymptotical linearity of the cross-validated AUC estimator and derived its influence
curve for both the i.i.d. and pooled repeated measures cases. We then suggested an computationally
efficient approach to constructing confidence intervals based on estimating this influence curve.
We implemented our approach as a publicly available R package called cvAUC. As demonstrated
in our simulation, for a fixed sample size n, as the number of variables in the data increases,
the adaptability of our estimator increases, which causes overfitting. This results in the coverage
probabilities decreasing below the desired coverage rate. Thus, as the number of variables increases,
more data is required in order to achieve the desired 0.95 coverage probability for a 95% confidence
interval. The simulation showed that for a sample size of n = 1000 with 70 or fewer covariates,
influence curve based confidence intervals for cross-validated AUC achieve accurate coverage rates.
We have demonstrated a computationally efficient alternative to bootstrapping for estimating the
variance of cross-validated AUC estimates.
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