32 research outputs found

    The Effect of Accuracy Motivation on Anchoring and Adjustment: Do People Adjust from Provided Anchors?

    Get PDF
    Increasing accuracy motivation (e.g., by providing monetary incentives for accuracy) often fails to increase adjustment away from provided anchors, a result that has led researchers to conclude that people do not effortfully adjust away from such anchors. We challenge this conclusion. First, we show that people are typically uncertain about which way to adjust from provided anchors and that this uncertainty often causes people to believe that they have initially adjusted too far away from such anchors (Studies 1a and 1b). Then, we show that although accuracy motivation fails to increase the gap between anchors and final estimates when people are uncertain about the direction of adjustment, accuracy motivation does increase anchor–estimate gaps when people are certain about the direction of adjustment, and that this is true regardless of whether the anchors are provided or self-generated (Studies 2, 3a, 3b, and 5). These results suggest that people do effortfully adjust away from provided anchors but that uncertainty about the direction of adjustment makes that adjustment harder to detect than previously assumed. This conclusion has important theoretical implications, suggesting that currently emphasized distinctions between anchor types (self-generated vs. provided) are not fundamental and that ostensibly competing theories of anchoring (selective accessibility and anchoring-and-adjustment) are complementary

    Correcting the Past: Failures to Replicate Psi

    Get PDF
    Across 7 experiments (N = 3,289), we replicate the procedure of Experiments 8 and 9 from Bem (2011), which had originally demonstrated retroactive facilitation of recall. We failed to replicate that finding. We further conduct a meta-analysis of all replication attempts of these experiments and find that the average effect size (d = 0.04) is no different from 0. We discuss some reasons for differences between the results in this article and those presented in Bem (2011)

    A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation

    Get PDF
    Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components

    Discounting rates for time versus dates: The sensitivity of discounting to time-interval description.

    No full text
    Florida This research examines the impact of time-interval description on consumers' discount rates. An initial study shows that consumers demand more money to delay income for a given time interval when that interval is described by an extent of time than when it is described by dates. This heightened discounting under extent-based (compared to date-based) descriptions also manifests when consumers specify their own waiting times, when they choose among investments, and when they postpone debts. Additional results suggest that this pattern arises because time intervals are perceived as longer when described by extent than when described by dates

    Preregistration

    No full text

    Preregistration

    No full text

    Preregistration

    No full text
    Preregistration material

    Materials

    No full text
    corecore