14 research outputs found

    The Lift Pool Method for Isolation of cDNA Clones from Lambda Phage Libraries

    Get PDF
    A PCR based strategy was developed to screen a Xenopus oocyte λgt10 cDNA library. The PCR-based lift pool (LP) method follows the same two tiered strategy as conventional screening of phage libraries by filter hybridization. Two rounds of plating, one at high density to detect the clone, and one at low density to purify the clone to homogeneity, are performed. In the first round, lysates from high density plates, termed plate pools (PP), serve as template for PCR. In the second round, phage particles adhering to plaque lifts of low density plates are washed off nitrocellulose filters to create LPs, which are used as template for PCR. The integrity of the plaques on the low-density plates is preserved. Once a positive LP has been identified, plaques on the corresponding plate are screened individually by PCR. Using isoform specific primer pairs for Xenopus myosin 7a and myosin 1d, two lambda clones were isolated. Subsequent DNA sequence analysis confirmed their identities as myosin isoforms (GenBank accession numbers: DQ100353 and AF540952). This method offers a time saving, cost-effective alternative to other hierarchical pooling strategies for the repeated screening by PCR of an arrayed lambda phage library

    Mutations in the Non-Helical Linker Segment L1-2 of Keratin 5 in Patients with Weber-Cockayne Epidermolysis Bullosa Simplex

    Get PDF
    Keratins are the major structural proteins of the epidermis. Analyzing keratin gene sequences, appreciating the switch in keratin gene expression that takes place as epidermal cells commit to terminally differentiate, and elucidating how keratins assemble into 10 nm filaments, have provided the foundation that has led to the discoveries of the genetic bases of two major classes of human skin diseases, epidermolysis bullosa simplex (EBS) and epidermolytic hyperkeratosis (EH). These diseases involve point mutations in either the basal epidermal keratin pair, K5 and K14 (EBS), or the suprabasal pair, K1 and K10 (EH). In severe cases of EBS and EH, mutations are found in the highly conserved ends of the α-helical rod domain, regions that, by random mutagenesis, had already been found to be important for 10 nm filament assembly. In order to identify regions of the keratin polypeptides that might be more subtly involved in 10 nm filament assembly and to explore the diversity in mutations within milder cases of these diseases, we have focused on Weber-Cockayne EBS, where mild blistering occurs primarily on the hands and feet in response to mechanical stress. In this report, we show that affected members of two different W-C EBS families have point mutations within 1 residue of each other in the non-helical linker segment of the K5 polypeptide. Genetic linkage analyses, the absence of this mutation in \u3e150 wild-type alleles and filament assembly studies suggest that these mutations are responsible for the W-C EBS phenotype. These findings provide the best evidence to date that the non-helical linker region in the middle of the keratin polypeptides plays a subtle but significant role in intermediate filament structure and/or intermediate filament cytoskeletal architecture

    Complete Genome Sequences of Cluster A Mycobacteriophages BobSwaget, Fred313, KADY, Lokk, MyraDee, Stagni, and StepMih

    Get PDF
    Seven mycobacteriophages from distinct geographical locations were isolated, using Mycobacterium smegmatis mc2155 as the host, and then purified and sequenced. All of the genomes are related to cluster A mycobacteriophages, BobSwaget and Lokk in subcluster A2; Fred313, KADY, Stagni, and StepMih in subcluster A3; and MyraDee in subcluster A18, the first phage to be assigned to that subcluster

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    The Diversity of Myosin-Based Contractile Systems in Eukaryotic Cells

    No full text
    Myosin is a molecular motor that through its interaction with actin, produces the movement characterized by such diverse cellular functions as muscle contraction and cytokinesis. The myosin molecules responsible for these movements are encoded by complex multigene families in higher organisms. Genes in these families show tissue-specific as well as developmentally regulated expression. In mammals, it has not been possible to dissect the precise functional contributions of individual members ofthe myosin heavy chain gene family. This manuscript discusses the information that can be gained from the molecular cloning of mammalian myosin heavy chains and how those cloned sequences can be used to study their function in vitro and in vivo

    Role of Myosin II Tail Sequences in its Function and Localization at the Cleavage Furrow in \u3ci\u3eDictyostelium\u3c/i\u3e

    No full text
    Cytoplasmic myosin II accumulates in the cleavage furrow and provides the force for cytokinesis in animal and amoeboid cells. One model proposes that a specific domain in the myosin II tail is responsible for its localization, possibly by interacting with a factor concentrated in the equatorial region. To test this possibility, we have expressed myosins carrying mutations in the tail domain in a strain of Dictyostelium cells from which the endogenous myosin heavy chain gene has been deleted. The mutations used in this study include four internal tail deletions: My∆824-941, My∆943-1464, My∆943-1194 and My∆1156- 1464. Contrary to the prediction of the hypothesis, immunofluorescence staining demonstrated that all mutant myosins were able to move toward the furrow region. Chimeric myosins, which consisted of a Dictyostelium myosin head and chicken skeletal myosin tail, also efficiently localized to the cleavage furrow. All these deletion and chimeric mutant myosins, except for My∆943- 1464, the largest deletion mutant, were able to support cytokinesis in suspension. Our data suggest that there is no single specific domain in the tail of Dictyostelium myosin II that is required for its functioning at and localization to the cleavage furrow

    CONTIG EXPLORER: Interactive Marker-Content Map Assembly

    No full text
    In STS-content mapping of a region, multiple optimal or near-optimal putative orders of markers exist. Determining which of the markers in this region can be placed reliably on the physical map of the chromosome and which markers lack sufficient evidence to be placed requires software that facilitates exploratory sensitivity analysis and interactive reassembly with different subsets of the input data and that also assists the evaluation of any arbitrary (user-specified) marker order. We describe CONTIG EXPLORER, a package for interactive assembly of STS-content maps that provides the user with various ways of performing such analyses, thereby facilitating the design of laboratory experiments aimed at reducing ambiguity in STS order. We then compare the output of CONTIG EXPLORER with two other assembly programs, SEGMAP and CONTIGMAKER, for a region of chromosome 12p between 21 and 38 cM on the sex-averaged CEPH/Généthon linkage map

    A Conserved Role of the Unconventional Myosin 1d in Laterality Determination

    No full text
    Anatomical and functional asymmetries are widespread in the animal kingdom [ 1, 2 ]. In vertebrates, many visceral organs are asymmetrically placed [ 3 ]. In snails, shells and inner organs coil asymmetrically, and in Drosophila, genitalia and hindgut undergo a chiral rotation during development. The evolutionary origin of these asymmetries remains an open question [ 1 ]. Nodal signaling is widely used [ 4 ], and many, but not all, vertebrates use cilia for symmetry breaking [ 5 ]. In Drosophila, which lacks both cilia and Nodal, the unconventional myosin ID (myo1d) gene controls dextral rotation of chiral organs [ 6, 7 ]. Here, we studied the role of myo1d in left-right (LR) axis formation in Xenopus. Morpholino oligomer-mediated myo1d downregulation affected organ placement in \u3e50% of morphant tadpoles. Induction of the left-asymmetric Nodal cascade was aberrant in \u3e70% of cases. Expression of the flow-target gene dand5 was compromised, as was flow itself, due to shorter, fewer, and non-polarized cilia at the LR organizer. Additional phenotypes pinpointed Wnt/planar cell polarity signaling and suggested that myo1d, like in Drosophila [ 8 ], acted in the context of the planar cell polarity pathway. Indeed, convergent extension of gastrula explant cultures was inhibited in myo1d morphants, and the ATF2 reporter gene for non-canonical Wnt signaling was downregulated. Finally, genetic interference experiments demonstrated a functional interaction between the core planar cell polarity signaling gene vangl2 and myo1d in LR axis formation. Thus, our data identified myo1d as a common denominator of arthropod and chordate asymmetry, in agreement with a monophyletic origin of animal asymmetry
    corecore