89,952 research outputs found

    Estimating Semiparametric Panel Data Models by Marginal Integration

    Get PDF
    We propose a new methodology for estimating semiparametric panel data models, with a primary focus on the nonparametric component. We eliminate individual effects using first differencing transformation and estimate the unknown function by marginal integration. We extend our methodology to treat panel data models with both individual and time effects. And we characterize the asymptotic behavior of our estimators. Monte Carlo simulations show that our estimator behaves well in finite samples in both random effects and fixed effects settings.Semiparametric Panel Data Model, Partially Linear, First Differencing, Marginal Integration

    The linear instability of the stratified plane Couette flow

    Full text link
    We present the stability analysis of a plane Couette flow which is stably stratified in the vertical direction orthogonally to the horizontal shear. Interest in such a flow comes from geophysical and astrophysical applications where background shear and vertical stable stratification commonly coexist. We perform the linear stability analysis of the flow in a domain which is periodic in the stream-wise and vertical directions and confined in the cross-stream direction. The stability diagram is constructed as a function of the Reynolds number Re and the Froude number Fr, which compares the importance of shear and stratification. We find that the flow becomes unstable when shear and stratification are of the same order (i.e. Fr ∼\sim 1) and above a moderate value of the Reynolds number Re≳\gtrsim700. The instability results from a resonance mechanism already known in the context of channel flows, for instance the unstratified plane Couette flow in the shallow water approximation. The result is confirmed by fully non linear direct numerical simulations and to the best of our knowledge, constitutes the first evidence of linear instability in a vertically stratified plane Couette flow. We also report the study of a laboratory flow generated by a transparent belt entrained by two vertical cylinders and immersed in a tank filled with salty water linearly stratified in density. We observe the emergence of a robust spatio-temporal pattern close to the threshold values of F r and Re indicated by linear analysis, and explore the accessible part of the stability diagram. With the support of numerical simulations we conclude that the observed pattern is a signature of the same instability predicted by the linear theory, although slightly modified due to streamwise confinement

    Sketch-based 3D Shape Retrieval using Convolutional Neural Networks

    Full text link
    Retrieving 3D models from 2D human sketches has received considerable attention in the areas of graphics, image retrieval, and computer vision. Almost always in state of the art approaches a large amount of "best views" are computed for 3D models, with the hope that the query sketch matches one of these 2D projections of 3D models using predefined features. We argue that this two stage approach (view selection -- matching) is pragmatic but also problematic because the "best views" are subjective and ambiguous, which makes the matching inputs obscure. This imprecise nature of matching further makes it challenging to choose features manually. Instead of relying on the elusive concept of "best views" and the hand-crafted features, we propose to define our views using a minimalism approach and learn features for both sketches and views. Specifically, we drastically reduce the number of views to only two predefined directions for the whole dataset. Then, we learn two Siamese Convolutional Neural Networks (CNNs), one for the views and one for the sketches. The loss function is defined on the within-domain as well as the cross-domain similarities. Our experiments on three benchmark datasets demonstrate that our method is significantly better than state of the art approaches, and outperforms them in all conventional metrics.Comment: CVPR 201

    Measuring information growth in fractal phase space

    Full text link
    We look at chaotic systems evolving in fractal phase space. The entropy change in time due to the fractal geometry is assimilated to the information growth through the scale refinement. Due to the incompleteness, at any scale, of the information calculation in fractal support, the incomplete normalization ∑ipiq=1\sum_ip_i^q=1 is applied throughout the paper. It is shown that the information growth is nonadditive and is proportional to the trace-form ∑ipi−∑ipiq\sum_ip_i-\sum_ip_i^q so that it can be connected to several nonadditive entropies. This information growth can be extremized to give, for non-equilibrium systems, power law distributions of evolving stationary state which may be called ``maximum entropic evolution''.Comment: 10 pages, 1 eps figure, TeX. Chaos, Solitons & Fractals (2004), in pres

    Spontaneous Formation of Stable Capillary Bridges for Firming Compact Colloidal Microstructures in Phase Separating Liquids: A Computational Study

    Full text link
    Computer modeling and simulations are performed to investigate capillary bridges spontaneously formed between closely packed colloidal particles in phase separating liquids. The simulations reveal a self-stabilization mechanism that operates through diffusive equilibrium of two-phase liquid morphologies. Such mechanism renders desired microstructural stability and uniformity to the capillary bridges that are spontaneously formed during liquid solution phase separation. This self-stabilization behavior is in contrast to conventional coarsening processes during phase separation. The volume fraction limit of the separated liquid phases as well as the adhesion strength and thermodynamic stability of the capillary bridges are discussed. Capillary bridge formations in various compact colloid assemblies are considered. The study sheds light on a promising route to in-situ (in-liquid) firming of fragile colloidal crystals and other compact colloidal microstructures via capillary bridges
    • …
    corecore