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Abstract

We propose a new methodology for estimating semiparametric panel data mod-
els, with a primary focus on the nonparametric component. We eliminate indi-
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1. Introduction

In many empirical studies involving panel data sets, at least in the initial stage of research,

it is useful to consider semiparametric models like the following,

Yit = αi + β′Zit + f(Xit) + εit, (1)

where αi is unobserved individual effect and Xit is most likely a low-dimensional covariate

vector that relates to Yit via an unknown function f . We call the above model semipara-

metric since only part of the covariate vector (i.e., Zit) is parameterized; and since the

unknown function f is in general nonlinear, the above model is also called a partially linear

panel data model. As a middle course between parametric and nonparametric extremes,

semiparametric models are very appealing for its flexibility to balance between precision

and robustness.

On some occasions, the nonparametric component f(Xit) is treated as a nuisance term

and the functional form f need not be estimated. This may be reasonable if Xit only

performs a “controlling” role and there is little ambiguity toward the relationship between

the variables of interest. However, if Xit are indeed among the variables of interest, and when

the theoretical predictions regarding the relationship between Xit and Yit are ambiguous

or controversial, the estimation of f may become the central objective. For example, the

classical research on Kuznets curve that investigates the relationship between income and

inequality centers on the estimation of a nonlinear (supposedly inverted-U shape) function

(See, e.g., Banerjee and Duflo (2003)). This is also true with the recent literature on

environmental Kuznets curve which examines the relationship between income and pollution

level (See, e.g., Millimet, List, and Stengos (2003)). Other important empirical topics such

as the estimation of the Engel curve, production function, earnings-age profile, and so

on, also boil down to estimating a possibly nonlinear relationship between two economic

variables, controlling for other factors. Of course, the nonparametric estimation may or
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may not be the end of analysis. But even as an initial analysis before parameterization, a

robust and reasonably accurate estimation of the nonlinear component is essential for the

success of future modeling and analysis.

In recent years, indeed, a lot of research has been done in estimating semiparametric

panel data models, the nonlinear component treated as a term of interest. As in the case

of linear panel data models, these efforts can be largely grouped into three categories, RE

(Random Effects), FE (Fixed Effects), and FD (First Differencing), depending on how they

treat the unobserved effects.

The RE school treats the unobserved effects as exogenous and puts them into the resid-

ual. Li and Stengos (1996), following Robinson (1988), develop a root-N consistent IV

estimator for the estimation of β, assuming that αi is uncorrelated with other covariates.

Although their focus is on the linear part, the nonlinear part can be easily estimated using

a second-stage kernel regression. This simple approach, which we may call the pooled esti-

mation, does not take into account the special covariance structure of the composite error,

αi +εit. However, Ruckstuhl, Welsh, and Carroll (2000) show that the pooled estimator has

better asymptotic properties than the quasi-likelihood estimator which takes into account

the covariance structure. Ruckstuhl, Welsh, and Carroll (2000) propose an alternative two-

step estimator, which we may call LL-RE (Local Linear Random Effects) estimator, that

also accounts for the covariance structure. They show that LL-RE may achieve smaller

asymptotic variance than the pooled estimator does, but the bias is in general incompa-

rable. Recently Su and Ullah (2007) generalize the two-step estimator to the multivariate

case.

As in linear panel data models, the FE approach treats the unobserved effects as dummy

variables. Su and Ullah (2006) propose to estimate the nonlinear component by profile

likelihood estimation, which boils down to a locally linear kernel smoothing, controlling

for fixed effects by dummies. To use the usual panel data terminology, the estimator by

Su and Ullah (2006) may be called LL-LSDV (Local Linear Least Squares with Dummy
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Variables) estimator. Recently, Mammen, Støve, and Tjøstheim (2009) develop an iterative

procedure based on smooth backfitting algorithm for estimating additive panel data models,

treating unobserved effects as dummy variables. Their procedure may be directly applied

to semiparametric panel data models with fixed effects.

Finally, the FD approach imposes no assumptions on unobserved effects and eliminates

unobserved effects by first differencing. However, this transformation leaves us a structure

of the following form, m(Xit, Xi,t−1) = f(Xit) − f(Xi,t−1), making the recovery of f diffi-

cult, even after successful estimation of the linear part. Henderson, Carroll, and Li (2008)

solve this problem by using an iterative backfitting procedure based on the first-order con-

dition of a profile likelihood criterion. Alternatively, Lee and Mukherjee (2008) propose to

first approximate f using a local Taylor series expansion before taking first differencing (or,

alternatively, within transformation). However, the function itself is eliminated from con-

sideration by first differencing, and hence their approach deals only with the first derivative

of f .

In this paper we propose a noniterative method that is based on marginal integration.

We observe that m(u, v) is an additive function and that marginal integration of an estimate

of m recovers f . The technique of marginal integration, under the name of “projection”,

is introduced by Auestad and Tjøsstheim (1991) in the context of time series regression.

A more systematic treatment is given in Tjøsstheim and Auestad (1994). This method

is independently invented by Newey (1994) and Linton and Nielsen (1995) in the context

of i.i.d. cross-section regression. Linton and Härdle (1996) generalize the method to deal

with additive regression with known links. For important developments of this technique,

see Masry and Tjøsstheim (1997), Linton (1997), Fan, Härdle, and Mammen (1998), Kim,

Linton, and Hengartner (1999), Cai and Masry (2000), and Hengartner and Sperlich (2005).

The estimator we develop is conceptually simple, hence it is straightforward to analyze

its statistical properties. Indeed, we derive the asymptotic distribution of our estimator us-

ing nothing more than standard arguments in multivariate kernel regression. Furthermore,
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the computational procedure for our estimator is noniterative, hence it is easy to imple-

ment in practice and also fast enough for finite sample investigations using Monte Carlo

simulations. The disadvantage of our approach, however, is some efficiency loss during the

unconstrained nonparametric estimation of m(u, v). In particular, the information in the

antisymmetric structure of m(u, v) is lost. As a preliminary attempt, we propose a sample

augmentation technique to make use of the structure. Although simulation results indicate

some success for this technique, we are currently unable to validate it theoretically. Hence

our asymptotic theory does not rely on sample augmentation.

The rest of the paper is organized as follows. The next section presents the model,

describes our methodology, and gives asymptotic properties of our estimators. We first

consider panel data models with only individual effects, then we extend our methodology

to treat two-way effects models. Section 3 presents some Monte Carlo evidence on how our

estimator behaves in the finite sample setting. All mathematical proofs are provided in the

appendix.

2. The Model and Estimation

We consider the semiparametric (partially linear) panel data model in (1) which is repro-

duced here for convenience,

Yit = αi + β′Zit + f(Xit) + εit, i = 1, · · · , N, t = 0, 1, · · · , T, (2)

where β ∈ Rb, Zit ∈ Rb, Xit ∈ Rd, and all other variables are scalars. f is an unknown

d-dimensional smooth function. Some or all elements in Zit may be correlated with residual

εit. And we allow for arbitrary correlation between the unobservable individual effect αi and

the regressors (Xit, Zit). The individual effect may be called fixed effect if it is correlated

with regressors or random effect if not. Finally, but importantly, we require d < 4 in this

paper, considering the curse of dimensionality that the semiparametric model is invented
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to avoid, and the fact that it is extremely difficult to interpret f if d ≥ 4.

One extension to the model in (2) is to introduce a time effect into the original model.

The extended model, called two-way effects (individual and time effects) model, will be

discussed later in the paper.

To estimate the model, we first take the FD (First Differencing) transformation of (2)

across time t for each group i ,

∆Yit = β′∆Zit + f(Xit)− f(Xi,t−1) + eit, i = 1, · · · , N, t = 1, · · · , T, (3)

where ∆Yit = Yit − Yi,t−1, ∆Zit = Zit − Zi,t−1, and eit = εit − εi,t−1. This first-differencing

transformation eliminates the individual effects αi. Throughout the paper, we assume:

Assumptions A

(1) (Xit, Zit, eit) are i.i.d. in i.

(2) For each i, Xit is strictly stationary with a well defined density p on a compact support

C ∈ Rd; and the marginal and joint densities of Xit are bounded from above and from

zero.

(3) eit is independent of (Xit), and E(eit) = 0, E(e2
it) = σ2

t , E|eit|4+ε < ∞ for some ε > 0.

A(1) is fairly standard for panel data models. The stationarity assumption in A(2) is

stronger than necessary and is made for simplifying analysis. We may obtain similar asymp-

totic results if we assume that (Xit, Xi,t−1) admits a joint density that does not vary over

t, which is not sufficient for stationarity. A(3) is fairly weak, allowing for serial correlation

in εit. Indeed, our methodology works best if εit is a random walk. Finally, note that the

covariance matrix of ei = (ei1, ..., eiT )′ is non-diagonal in general. Later in this section,

we will discuss possibilities of using this fact to improve efficiency. We now turn to the

estimation of the model and related issues in implementation.
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2.1 The Linear Component

For the linear part parameterized by β, the transformed model in (3) is a special case of

the model considered in Li and Stengos (1996). Let u = (u1, ..., ud)′ and v = (v1, ..., vd)′,

and let p2(u, v) be the joint density of (Xit, Xi,t−1). The model in (3) implies

Y ∗
it = β′Z∗it + uit,

where Y ∗
it = ρit(∆Yit − E(∆Yit|Xit, Xi,t−1)), Z∗it = ρit(∆Zit − E(∆Zit|Xit, Xi,t−1)), uit =

ρiteit, and ρit = p2(Xit, Xi,t−1). Working with this density weighted equation enables

us to avoid the random denominator problem typical in nonparametric kernel regression

estimation.

Assuming there exists a vector of instrumental variables Wit ∈ Rb, we may construct

an IV estimator for β. Let W ∗
it = ρit(Wit − E(Wit|Xit, Xi,t−1)). And let the capital letters

without subscripts denote the matrices of observations of the corresponding variable. More

specifically, we denote Zi = (Zi1, ..., ZiT )′ and Z ≡ (Z ′1, ..., Z
′
N )′. Throughout the paper we

use the same matrixization and denote Z = [Z ′it]. Then we have an infeasible IV estimator

β̂ = (W ∗′Z∗)−1W ∗′Y ∗, assuming that the term in parentheses is invertible.

To make the IV estimator feasible, we estimate ρit by ρ̂it = 1/(NT ))
∑

js Lg(Xit −
Xjs)Lg(Xi,t−1 −Xj,s−1), where Lg(u) = g−d

∏d
j=1 l(uj/g), l is a univariate kernel and g is

the associated bandwidth. The conditional means are estimated by 1/(NT )
∑

js ξitLg(Xit−
Xjs)Lg(Xi,t−1 −Xj,s−1), where ξit denotes ∆Yit, ∆Zit, and Wit. Assuming that Ŵ ∗′Ẑ∗ is

invertible, we obtain the following feasible IV estimator,

β̂ = (Ŵ ∗′Ẑ∗)−1Ŵ ∗′Ŷ ∗. (4)

Let the class of kernels Kν and the function class Gα
ς be defined as Definition 1 and

Definition 2 of Robinson (1988), respectively. Kernels in Kν are of order ν, and the functions

in Gα
ς are ς-times partially differentiable with a Lipschitz-continuous remainder. α controls
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the moment properties of the remainder. In particular, the functions in G∞ς are bounded.

For the root-N consistent estimation of β, we adapt the following assumptions from Li and

Stengos (1996),

Assumptions B

(1) p2 ∈ G∞ς for some constant ς ≥ 1, f ∈ G4+ε
ν , E(∆Zit|Xit, Xi,t−1) ∈ G4+ε

ν for some ε > 0

and positive integer ν with ς < ν ≤ ς + 1.

(2) There exists an IV vector Wit ∈ Rb such that Wit is i.i.d. in i, E(W 4+ε
it ) < ∞,

E(Wit|Xit, Xi,t−1) ∈ G4+ε
ν , and E(eit|Wit) = 0 for all t. And Ξ = EW ∗

12Z
∗
12
′ is nonsin-

gular.

(3) l ∈ Kν , and as N →∞, a → 0, and Na4d →∞, and Na4ν → 0.

The assumptions in B(2) are fairly standard for an IV vector. For a typical application

with d = 1, B(3) is satisfied if we let ν = 2 and choose a second-order kernel for l. B(1) is

satisfied if p2 has continuous partial derivatives and f is twice continuously differentiable. If

d > 1, then we have to use a higher order kernel for l and f needs to have more derivatives,

which is one form of the curse of dimensionality.

The assumption on p2, which states that p2 is bounded and at least first-order partially

differentiable with a Lipschitz-continuous remainder, is stronger than that is made in Li and

Stengos (1996), who only require Lipschitz continuity. This stronger assumption is made

for estimating the nonlinear part and is not required for the following theorem, which is

proved in Li and Stengos (1996).

Theorem 1. Under assumptions A and B, we have

√
N(β̂ − β) →d N(0,Ξ−1Ψ(Ξ−1)′), (5)
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where Ψ = 1/T 2
∑

t

∑
s E (e1te1sW

∗
1tW

∗
1s
′). Furthermore, we can consistently estimate Ψ

and Ξ by plugging in the estimates for each term.

2.2 The Nonlinear Component

The major contribution of this paper is in estimating the unobserved function f(·). To

simplify the notations, we denote Rit = ∆Yit − β′∆Zit. We rewrite (3) as

Rit = m(Xit, Xi,t−1) + eit, i = 1, · · · , N, t = 1, · · · , T, (6)

where m : R2d → R is an additive function:

m(u, v) = f(u)− f(v), u, v ∈ Rd. (7)

Obviously, m(u, v) = −m(v, u). Hence m(u, v) is antisymmetric.

We may easily estimate m(u, v) using multivariate kernel smoothing methods. The

popular estimators are Nadaraya-Watson (Nadaraya (1964); Watson (1964)), Gasser-Müller

(Gasser and Müller (1984)), and local linear (Stone (1977); Cleveland (1979); Fan (1992);

Ruppert and Wand (1994)), among others. In principle, each of these approaches would

serve our purpose. We will prove asymptotic properties only for the local linear method,

which includes Nadaraya-Watson as a special case.

Let K(u) =
∏d

i=1 k(ui), where k is a univariate second-order symmetric kernel. And de-

note KH(u) = |H|−1K(H−1u), where H = diag(h1, ..., hd) is a diagonal bandwidth matrix.

The local linear estimator of m(u, v) solves the following problem for α,

min
α,γ1,γ2

N∑

i=1

T∑

t=1

[
Rit − α− γ′1(Xit − u)− γ′2(Xi,t−1 − v)

]
KH(Xit − u)KH(Xi,t−1 − v). (8)

It is well known that the problem in (8) is a weighted least square problem. Let R = [Rit]

and Γ = [1 (Xit − u)′ (Xi,t−1 − v)′] (a 1 + 2d column matrix); and W = diag[KH(Xit −
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u)KH(Xi,t−1−v)]. Note that we suppress the dependence on u and v of Γ and W . Assuming

that Γ′WΓ is invertible, (8) has a solution for α̂ (hence m̂(u, v)),

m̂(u, v) = α̂ = ι′(Γ′WΓ)−1Γ′WR, (9)

where ι = (1,

2d︷ ︸︸ ︷
0, ..., 0)′. Note that γ̂1 supplies an estimate of ∂f

∂u(u). If our primary goal is

estimating the partial derivatives, we may stop here. While it is possible to recover f up to

an additive constant from partial derivatives by numerical integration, we are obviously not

satisfied with this solution; the reason is that although the asymptotic properties of γ̂(u)

are well known, those of
∫ x

γ̂(u)du are not. And it is conjectured that statistical error may

accumulate through numerical integration. We focus on m̂(u, v), which is the stepstone for

estimating f .

We proceed to estimate f(·) by marginally integrating m̂(u, v),

f̂(u) =
∫

C
m̂(u, v)q(v)dv, (10)

where q is a predetermined density function. For model identification, we follow Hengartner

and Sperlich (2005) and assume
∫
C f(u)q(u)du = 0. Note that this condition reduces to

E(f(Xit)) = 0 as in Linton and Härdle (1996) if we take q = p. It is easy to see the rationale

behind (10), ∫

C
m(u, v)q(v)dv =

∫

C
(f(u)− f(v))q(v)dv = f(u).

Note that, in practice, it is not always necessary to impose the identification condition. If

the condition does not hold, f can still be identified up to an additive constant.

We may implement the marginal integration in (10) by numerical integration methods

such as Simpson’s or Trapezoidal rules. Let the number of evaluation points on each “nui-

sance dimension” (the dimensions in v) be S. Then for the estimation of every point in the

dimension of interest, we need compute Sd weighted least squares, each of which requires
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O(N) operations. This may become a practical concern and calls for discretion over the

balance between numerical accuracy and computational time.

An alternative method of calculating the marginal integration is to generate i.i.d. sam-

ples (X∗
k , k = 1, ..., n) from the distribution q and to construct f̂mc(u) = 1

n

∑n
k=1 m̂(u,X∗

k).

If n is large enough, f̂mc approximates f̂ well. We may well choose q(·) to be the density

function of Xi,t. In this case we may use the sample version of (10),

f̂s(u) =
1

N(T + 1)

N∑

i=1

T∑

t=0

m̂(u,Xi,t). (11)

Asymptotically, this estimator behaves the same as (10) when q is the density of Xi,t. We

assume:

Assumptions C

(1) q is a bounded density function, defined on the compact support C, twice continuously

differentiable, and
∫
C f(u)q(u) = 0.

(2) k is a second-order kernel that is positive, bounded, symmetric, and defined on the

support C.

(3) H = H0N
−1/(4+d), where H0 is a diagonal matrix with positive constants on the

diagonal.

These assumptions are fairly standard in literature. Let f̂ be defined as in (10). And denote

ϕ(k) =
∫

k(u)2du, µ2(k) =
∫

u2k(u)du, Df = ∂f
∂u , and Hf = ∂2f

∂u∂u′ . The following theorem

is the major result of this paper.

Theorem 2. Let u be an interior point of supp(p) and let Assumptions A, B, and C hold.

Given a fixed T and as N →∞, we have

N2/(4+d)(f̂(u)− f(u)) →d N(B(u), V (u)), (12)
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where

B(u) =
1
2
µ2(k)

[
tr

(
H2

0Hf (u)
)−

∫

C
tr

(
H2

0Hf (v)
)
q(v)dv

]
, (13)

and

V (u) =
ϕd(k)σ̄2

T |H0|
(∫

C

q2(v)
p2(u, v)

dv

)
, (14)

where σ̄2 = 1/T
∑

t σ2
t .

The proof is given in the Appendix. Here we make a number of remarks.

Remark 1: If we impose i.i.d. condition on Xit across t as well as i, and if we take q = p,

the asymptotic variance would take an even simpler form:

V (u) =
ϕd(k)σ̄2

T |H0|p(u)
.

Remark 2: We may consistently estimate V (u) by

V̂ (u) = N−2(2+d)/(4+d)T−2
N∑

i=1

T∑

t=1

ê2
itθ̂

2
it, (15)

where θ̂it = 1/ñ
∑ñ

j=1 wj(u,X∗
j ) with

wj(u,X∗
j ) =

KH(u−Xit)KH(X∗
j −Xi,t−1)∑N

i=1

∑T
t=1 KH(u−Xit)KH(X∗

j −Xi,t−1)
,

where (X∗
j , j = 1, ..., ñ) are drawn from the distribution with density q. If q = p, we may

simply use (Xit) in place of (X∗
j ).

Remark 3: We can construct confidence bands for f using the asymptotic result. Denot-

ing the (1 − a
2 ) quantile of the standard normal distribution with z1−a

2
, we get the 1 − a
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confidence bands,

[
f̂(u)−N−2/5

(
B(u) + z1−a

2
V 1/2(u)

)
, f̂(u)−N−2/5

(
B(u)− z1−a

2
V 1/2(u)

)
]
.

With some under-smoothing (i.e., h = o(N−1/5)), we may ignore the bias term and use only

the asymptotic variance to construct confidence bands for f(u). At the cost of computation

time, we may also improve the quality of confidence bands by bootstrap. See Härdle and

Marron (1991) for more details.

Remark 4: An optimal H0 may be found by minimizing AMISE (Asymptotic Mean

Integrated Squared Error). This is best illustrated by considering the case of d = 1, when

H0 = h0 is a positive scalar. We minimize

AMISE(h0) =
∫

C

(
B2(u) + V (u)

)
du.

Then we obtain an optimal h0:

h0 =
(

ϕ(k)σ̄2

µ2
2(k)T

ϑ2

ϑ1

) 1
5

,

where

ϑ1 =
∫

C
(f ′′(u)−

∫

C
f ′′(v)dv)2du, and ϑ2 =

∫

C

∫

C
q2(v)p−1

2 (u, v)dudv.

Replacing the unknown quantities (σ̄2, ϑ1, and ϑ2) with their estimates, we obtain a plug-in

bandwidth selector. And the above strategy can be easily extended to multivariate case.

We may also choose bandwidths using delete-one CV (Cross-Validation), generalized

CV (Craven and Wabha, 1979), or model selection procedures such as Mallows’(1973) Cp

and CL procedures. See Li (1987) and Andrews (1991) for the asymptotic properties of

these selectors.
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Remark 5: If the Nadaraya-Watson kernel smoothing is used for estimating m(u, v), the

asymptotic variance of f̂(u) would be the same as in (14), but the asymptotic bias takes

the following form:

B(u) = µ2(k)
[
1
2
tr

(
H2

0Hf (u)
)− 1

2

∫

C
tr

(
H2

0Hf (v)
)
q(v)dv

+ D′f (u)H2
0

∫
∂ log(p2(u, v))

∂u
q(v)dv −D′f (v)H2

0

∫
∂ log(p2(u, v))

∂v
q(v)dv

]
.

Remark 6: If f is twice partially differentiable, our estimator achieves the best conver-

gence rate possible. However, we require higher-order differentiability of f to estimate the

linear component if d ≥ 2. Recall that in Assumption B, we require f ∈ G4+ε
ν and ν > d.

The optimal rate is thus N−ν/(2ν+d), higher than our estimator achieves. To achieve the

optimal rate, we need higher-order locally polynomial smoothing to reduce bias. We choose

not to do so for the attractive properties of local linear estimators (Fan and Gijbels (1992),

Ruppert and Wand (1994)). And if there is no linear part, we only need twice differentiabil-

ity for f , regardless of d. Then the optimal rate of kernel regression estimator is N−2/(4+d),

which is achieved by our estimator.

Remark 7: Finally, the form of the asymptotic variance V (u) suggests when our method

might fail. That is when Xit is accurately predictable by Xi,t−1. In this case, if we write

p2(u, v) = p(u|v)p(v), p(u|v) would be close to zero except in a small neighborhood of v,

hence a large V (u). This happens, for example, if Xit is highly persistent in t.

2.3 Efficiency Issues

Now we discuss two issues related with the efficiency of our estimator. The first is concerned

with how we may use the covariance matrix of ei = (ei1, ..., eiT )′, which is in general not

diagonal. The second issue is concerned with how we may use the antisymmetric property

of m(u, v).
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Covariance Structure

Let Σ denote the covariance matrix of ei, which is diagonal only when εit is a random walk.

Indeed, if εit is i.i.d. across t, Σ would be a tridiagonal matrix with 2’s on the main diagonal

and -1’s on the sub-diagonal. Our estimator of m(u, v) does not make use of this structure,

and therefore it is possible to be improved.

One way to take advantage of the covariance structure is to estimate m(u, v) by the

quasi-likelihood method proposed by Severini and Staniswalis (1994). The quasi-likelihood

estimator of m(u, v) is the intercept in the solution of θ in

Γ′
(
IN ⊗ Σ−1

)
ΓW (Y − Γθ) = 0,

where IN is an N -dimensional identity matrix and ⊗ denotes Kronecker product.

We may also employ a two-stage procedure similar with Ruckstuhl, Welsh, and Carroll

(2000) and Su and Ullah (2007). Let ηit = (Xit, Xi,t−1) and ηi = (ηi1, ..., ηiT )′. The two-

stage estimator is based on the following identity

τΣ−
1
2 Ri −

(
τΣ−

1
2 − IT

)
M(ηi) = M(ηi) + τΣ−

1
2 ei,

where τ is a positive constant, Ri = (Ri1, ..., Ri,T )′, and M(ηi) = (m(ηi1), ..., m(ηiT ))′. The

first step obtains a local linear estimator of m (ignoring the covariance structure) and an

estimator of Σ. Then we replace unknown quantities on the left with their estimates and

run a second-stage local linear regression.

It is not clear, however, that the above treatments may improve the accuracy of our esti-

mator. In a similar context, Ruckstuhl, Welsh, and Carroll (2000) show that the asymptotic

variance of the quasi-likelihood estimator is of higher order than that of the simple “pooled

estimator”, that is, the estimator ignoring covariance structure. The two-stage estimator

may achieve a smaller asymptotic variance with some appropriate choice of τ , but the bias

term is complicated and it is difficult to be compared with that of the pooled estimator.
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In explaining why the simple pooled estimator performs so well asymptotically, Ruckstuhl,

Welsh, and Carroll (2000) point out that the covariance structure is a global property of the

residual which may not be important for methods that act locally in the covariate space.

Sample Augmentation

The second issue is concerned with the structure of m(u, v), which is by definition antisym-

metric. We do not make use of this information in estimating m(u, v) using unconstrained

kernel smoothing methods. Hence our estimator suffers from some efficiency loss. One

way to impose the antisymmetric structure on m(u, v) is to generate another copy of data

that is antisymmetric to the original data, and to use both the original data and their

antisymmetric mirror in kernel smoothing.

To see this, recall that for any triplet (Rit, Xi,t, Xi,t−1), we have

E (Rit|X) = f(Xi,t)− f(Xi,t−1),

since εit is assumed to be independent of X. Then the triplet (−Rit, Xi,t−1, Xi,t) must also

satisfy the above equation and can be included in the sample. We may call this practice

“sample augmentation”. However, our development of asymptotic theory does not extend

easily to the augmented sample, which obviously contains nonindependent (antisymmetric)

observations. Limited simulation results show that sample augmentation may considerably

improve our estimator. Undoubtedly it calls for further research into the general theory of

imposing prior structures on multivariate nonparametric estimation (not just the antisym-

metric structure in our case) by some type of sample augmentation.

2.4 Two-Way Effects Models

For some applications it is desirable to include a time effect in model (2), controlling for

unobserved time-varying factors that are common across individuals. Then we have a two-
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way effects panel data model. To focus on the main idea, we consider the following simplified

model,

Yit = αi + φt + f(Xit) + εit, i = 0, 1, · · · , N, t = 0, 1, · · · , T, (16)

where (φt) represent time effects and Xit is univariate2.

The model in (16) contains time effects (φt) that do not disappear with the first dif-

ferencing procedure described above. To eliminate φt, we take another difference across

individual i for each time t. Thus we have

∆2Yit = [f(Xit)− f(Xi,t−1)− f(Xi−1,t) + f(Xi−1,t−1)] + eit, (17)

where i = 1, · · · , N , t = 1, · · · , T , and eit = εit−εi,t−1−εi−1,t+εi−1,t−1. Setting Rit = ∆2Yit

and v = (v1, v2, v3)′, we rewrite (17) as

Rit = m(Xit, Xi,t−1, Xi−1,t, Xi−1,t−1) + eit, i = 1, · · · , N, t = 1, · · · , T, (18)

where m : R4 → R is an additive function that satisfies

m(u, v) ≡ m(u, v1, v2, v3) = f(u)− f(v1)− f(v2) + f(v3). (19)

We estimate m using local linear smoothing. The form of m̂ is the same as in (9), but the

definition of each term should be modified. Let Ñ = N if N is even, else Ñ = (N − 1)/2.

We set ι = (1, 0, 0, 0, 0)′. Γ is now a 5-column matrix [1, (X2i,t−u), (X2i,t−1−v1), (X2i−1,t−
v2), (X2i−1,t−1 − v3)]i=1,2,...,Ñ ,t=1,2,...,T . The diagonal elements of W are now kh(X2i,t −
u)kh(X2i,t−1 − v1)kh(X2i−1,t − v2)kh(X2i−1,t−1 − v3), where kh(u) = k(u/h)/h and k is a

second-order symmetric kernel. Finally, R = [R2i,t].

Note that in these definitions we only use non-overlapped cross-sections. For example,
2For a multivariate Xit with dimension d, our methodology would involve nonparametric estimation of

a 4d-dimensional pilot function. The curse of dimensionality would render the two-way effects models with
d ≥ 2 practically irrelevant.
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we do not include [(X2i−1,t − u), (X2i−1,t−1 − v1), (X2i−2,t − v2), (X2i−2,t−1 − v3)] in the

definition of Γ. So in a sense we have dropped half of the sample. This is to deal with the

technical issue arising from the second differencing transformation across individuals. After

this transformation, the observations Uit ≡ (Rit, Xit, Xi,t−1, Xi−1,t, Xi−1,t−1) are no longer

i.i.d. across i, making some of the well known asymptotic results of local linear estimators

unapplicable. Undoubtedly this would affect the efficiency of the estimator and should not

be rigidly followed in practical applications.

We then estimate f(u) by

f̂(u) =
∫

m̂(u, v)q(v1)q(v2)q(v3)dv1dv2dv3, (20)

where q(v) is a predetermined univariate density function. As in the previous section,

we may implement (20) by numerical integration or sample integration using actual or

simulated data.

Being 4-dimensional, m is endowed with a more complex structure of symmetry or

antisymmetry. Specifically, we have

m(u, v1, v2, v3) = −m(v1, u, v3, v2),

m(u, v1, v2, v3) = −m(v2, v3, u, v1), and

m(u, v1, v2, v3) = m(v3, v2, v1, u).

We may again use this structural information for sample augmentation to improve efficiency.

For the development of asymptotic theory, we assume,

Assumptions D

(1) Both f and q are defined on the compact support C, twice continuously differentiable,

and
∫
C f(u)q(u) = 0.
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(2) For each i, all joint densities of (Xit) are continuously differentiable.

(3) k is a bounded and symmetric second order kernel on C.

(4) h = h0Ñ
−1/5, where h0 is a positive constant.

Let p4(u, v1, v2, v3) denote the joint density of (Xit, Xi,t−1, Xi−1,t, Xi−1,t−1). The following

theorem gives the asymptotic properties of the estimator f̂ defined in (20).

Theorem 3 Let u be an interior point of supp(p). If Assumptions A and D hold, then

Ñ2/5(f̂(u)− f(u)) →d N(B(u), V (u)), (21)

where

B(u) =
1
2
h2

0µ2(k)
(

f ′′(u)−
∫

C
f ′′(s)q(s)ds

)
, (22)

V (u) =
ϕ(k)σ̄2

h0T

(∫
q2(v1)q2(v2)q2(v3)

p4(u, v1, v2, v3)
dv1dv2dv3

)
(23)

The proof is a straightforward extension of the proof for Theorem 2 and hence omitted.

Note that, unlike the individual effect αi, the time effect φt can be consistently estimated,

assuming that φ0 = 0. Let ∆Yit = Yit − Yi,t−1 and ∆φt = φt − φt−1, t ≥ 1. We can

consistently estimate ∆φt by

∆̂φt =
1
N

N∑

i=1

(∆Yit − (f̂(Xit)− f̂(Xi,t−1)).

3. Simulations

In this section we use simulations to answer the following questions: does our estimator

perform reasonably well in finite samples under the following settings: (1) when (αi) are
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random effects; (2) when (αi) are fixed effects; (3) and when (Xit) is persistent (but still

stationary) over time?

3.1 The Setup

We consider the following data generating process (DGP),

Yit = αi + f(Xit) + σεit, i = 1, ..., N, t = 1, ..., T, (24)

where Xit is a scalar random variable; εit is an i.i.d. N(0, 1) random variable; and f(·) is a

pre-specified function to be estimated. And we experiment with two specifications of αi,

(a) Random Effects (RE) : αi is i.i.d. N(0, 4), independent of (Xit), which are i.i.d.

uniformly distributed between [−2, 2].

(b) Fixed Effects (FE): αi is i.i.d. N(0, 4) dependent on (Xit); the dependence is imposed

by generating Xit by Xit = αi/2+Uit, where Uit is i.i.d. uniformly distributed between

[−2, 2].

We consider the following functional forms for f :

(1) f1(x) = −1/2x2,

(2) f2(x) = x cos(πx),

(3) f3(x) = x + 2 exp(−16x2),

(4) f4(x) = sin(2x) + 2 exp(−16x2).

f1 is of inverted U shape, which is often seen in empirical economics. f2 is used in Linton

and Jacho-Chaávez (2009), and f3 and f4 are used in Fan and Gijbels (1992). We use these

familiar functional forms to facilitate comparisons in literature. Throughout the simulations,

we estimate these function on the support [−2, 2].
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3.2 A Graphic Illustration

Figure 1 plots three consecutive FD estimates of each function. The estimated and the true

functions are shifted so that they all integrate to zero. We implement the FD estimator

using the sample version of marginal integration in (11) with the standard normal kernel.

We use the plug-in bandwidth described in Remark 4. And we choose T = 5 and N = 50,

and take αi to be random effects.

It can be seen that these estimates trace the true functions (bold solid lines) well, even

in locations near the boundary. For f3 and f4, there is some under-smoothing in the bump

area. Recall that the plug-in bandwidth minimizes estimated AMISE, which is a global

distance metric. For functions such as f3 and f4, it may be better to use bandwidth h(x)

that is a function of x and minimizes some local distance metric.

It should be noted that Figure 1 is only of illustrative purpose. We now turn to repeated

experiments for a more conclusive view of how our estimator performs in finite samples.

3.3 Comparative Performance

In the repeated experiments, we first compare our estimator with the estimator proposed in

Ruckstuhl, Welsh, and Carroll (2000) and Su and Ullah (2007), which works for the random-

effects specification; and that proposed in Su and Ullah (2006), which is designed for the

fixed-effects specification. As mentioned in the introduction, we may call the former method

LL-RE (Local Linear Random Effects) and the latter LL-LSDV (Local Linear LSDV). We

call our method FD (First Differencing).

We fix T = 5 and examine the finite sample performance of FD, LL-RE, and LL-LSDV

when N is 50 and 100. We experiment with both low-noise level (σ = 0.5) and high-noise

level (σ = 1). We do not impose identification condition in the simulations. Hence f is only

identified up to an additive constant. We define the ISE (Integrated Square Error) of an

estimate f̂ by

ISEh(f̂) =
∫

(f̂∗(x)− f∗(x))2dx,
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Figure 1: An Illustration of FD Estimates. In each diagram, the bold line is the true
function and the three thin lines are FD estimates from three random experiments. f1, f2,
f3, and f4 are defined in the text.
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where f∗(x) = f(x)− ∫ b
a f(x)dx/(b− a). f∗ is the true function shifted by a constant such

that f∗ integrates to zero. f̂∗ is similarly defined. The ISE obviously depends on the choice

of bandwidth, hence the subscript. For better comparisons, we use a pre-specified set of

bandwidths. More specifically, we vary h from 0.1 to 0.6, with a small step size 0.03 within

[0.1, 0.25] and a bigger step size 0.05 in the remaining.

We repeat our experiment 500 times. Taking average of the ISEh, we obtain an MISEh

for each estimator. Figure 2 compares the logarithm of MISEh. The first two columns

correspond to RE experiments and the third and the fourth columns correspond to FE.

The first two rows correspond to f1, the third and the fourth rows correspond to f2, and so

on. The odd rows correspond to N = 50 and the even rows correspond to N = 100. The

odd columns correspond to σ = 0.5 and the remaining columns correspond to σ = 1.

We make the following observations from Figure 2. First, overall, FD works well for

both RE and FE specifications. It can be seen that when the underlying DGP is RE, FD is

a close competitor of LL-RE. In many cases, FD may even outperform LL-RE. And when

the underlying DGP is FE, FD is a close competitor of LL-LSDV. In some cases, FD may

also outperform LL-LSDV. Second, FD compares less favorably with its competitors when

signal-noise-ratio is low (big σ). This may be explained by the fact that εit is generated as

an i.i.d. N(0, σ2) noise and the first differencing transformation results in a residual term

eit with variance 2σ2. Third, when the bandwidth is very small, FD is unreliable. This

indicates that we should worry more about the variance than the bias of our estimator.

Finally, we point out the different behavior of MISEh of FD for RE and FE specifications

may be due to the way we generate Xit. If the underlying DGP is RE, Xit has a compact

support [−2, 2]. But if the DGP is FE, many observations of Xit may fall outside the

support, affecting the performance of every estimator.

Table 1 reports the median and the SD (Standard Deviation) of the smallest ISE of

each estimator with its most advantageous bandwidth. That is, the median and the SD

calculated from {ISEj,h∗j , j = 1, ..., 500)} for each each estimator, where the subscript j
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Figure 2: Simulation Results on Comparative Performance. The x-axis is bandwidth h and
the y-axis is log (MISEh). In each diagram, the solid line : FD (First Differencing), the
dot-dashed line : LL-RE (Local Linear Random Effects), and the dashed line : LL-LSDV
(Local Linear LSDV). f1, f2, f3, and f4 are defined in the text. T = 5, and the number of
repetition is 500. More details are in the text.
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denotes each repetition of simulation and h∗j is the bandwidth that, among all pre-specified

bandwidth, achieves the minimal ISE. Hence Table 1 compares the best performance of

each estimator.

It can be seen that the median (best) performance tells a similar story with what is re-

ported in Figure 2, which compares the mean performance across a spectrum of bandwidth.

Furthermore, the results on the SD of ISE reassure us that the dispersions of ISE around

the mean are reasonable. Hence, with an appropriately chosen bandwidth, our estimator

may be safe for practical applications. Finally, we may check that the square root of median

ISE decreases at roughly a rate of N−2/5, consistent with what is suggested by Theorem 2

for d = 1.

3.4 Experiments on Persistence

Now we consider the case when (Xit) is persistent. We generate zero-mean AR time series

as follows,

Xi,0 ∼ N(0, 2), and Xit = aXi,t−1 + ηt,

where the a ∈ [0, 1) controls the persistence level and ηt ∼ i.i.d. N(0, 2(1 − a2)). Hence

for each i, Xit is strictly stationary with marginal distribution N(0, 2). αi is generated as

random effect, that is, αi ∼ i.i.d. N(0, 4) independent of X. We use the plug-in bandwidth

described in Remark 4 following Theorem 2. We vary a from 0 to 0.95. The number of

repetitions is set to be 500, and the mean, the median, and the SD (Standard Deviation)

of the ISE’s of FD estimator are reported in Table 2. We choose to report results from the

experiments on f2. The results from other functional forms are similar.

Table 2 shows, not surprisingly, that our estimator is unstable at high persistence levels.

Under mild persistence (a ≤ 0.6), the mean, the median, and the SD of ISE still remain in

a reasonable range. This is not the case when a ≥ 0.8. Note that the median’s are generally

lower than the mean, indicating there are instances where our estimator is way off the mark,

bringing down the average performance. This set of simulation results, hence, would serve
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Table 1: Monte Carlo Results I: On Comparative Performance

This table compares the best performance of each estimator. The median and the SD of the smallest ISE
of each estimator are reported. T = 5, the number of repetition is 500, and more details are in the text.

RE FE
σ = 0.5 σ = 1 σ = 0.5 σ = 1

Median SD Median SD Median SD Median SD

f1, N=50

FD 0.0232 0.0198 0.0668 0.0673 0.0160 0.0216 0.0656 0.1058
LL-RE 0.0424 0.0541 0.0713 0.0736 1.2478 0.5316 1.2001 0.6261

LL-LSDV 0.3668 0.0809 0.3932 0.1099 0.4641 0.1710 0.4934 0.2141

f1, N=100

FD 0.0123 0.0110 0.0364 0.0393 0.0089 0.0116 0.0311 0.0470
LL-RE 0.0262 0.0252 0.0389 0.0405 1.2059 0.3550 1.2287 0.3954

LL-LSDV 0.3618 0.0522 0.3813 0.0784 0.4386 0.1142 0.4478 0.1334

f2, N=50

FD 0.0964 0.0451 0.2501 0.1272 0.2566 0.2591 0.5421 0.4094
LL-RE 0.1658 0.0917 0.2602 0.1292 1.3758 0.5950 1.4073 0.6982

LL-LSDV 0.8486 0.1279 0.8781 0.1796 1.1034 0.2168 1.1536 0.2455

f2, N=100

FD 0.0515 0.0220 0.1436 0.0652 0.1868 0.1570 0.3506 0.2380
LL-RE 0.0981 0.0450 0.1458 0.0684 1.3030 0.4149 1.3522 0.4595

LL-LSDV 0.8296 0.0840 0.8394 0.1220 1.1009 0.1310 1.1197 0.1585

f3, N=50

FD 0.1358 0.0533 0.2991 0.1244 0.2722 0.1264 0.4955 0.1869
LL-RE 0.2126 0.0926 0.2972 0.1293 1.4589 0.5992 1.4709 0.6333

LL-LSDV 0.4988 0.0721 0.5323 0.0913 0.5313 0.0796 0.5630 0.0964

f3, N=100

FD 0.0731 0.0275 0.1832 0.0694 0.1974 0.0877 0.3921 0.1329
LL-RE 0.1262 0.0498 0.1875 0.0738 1.3840 0.4042 1.3636 0.4603

LL-LSDV 0.4965 0.0562 0.5134 0.0700 0.5247 0.0523 0.5530 0.0693

f4, N=50

FD 0.1371 0.0572 0.3153 0.1293 0.2852 0.1446 0.5131 0.2582
LL-RE 0.2142 0.0959 0.3167 0.1320 1.4372 0.6158 1.4939 0.6304

LL-LSDV 0.9792 0.1285 1.0267 0.1659 1.1119 0.1616 1.1327 0.1933

f4, N=100

FD 0.0776 0.0279 0.1879 0.0704 0.2022 0.1146 0.3897 0.1673
LL-RE 0.1288 0.0519 0.1867 0.0720 1.3883 0.4157 1.3787 0.4500

LL-LSDV 0.9833 0.0888 1.0097 0.1161 1.0866 0.1067 1.1072 0.1398
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Table 2: Monte Carlo Results II: On Persistence

This table reports how persistence in Xit may influence the performance of FD. Mean, Median, and SD of
ISE are reported. a is the level of persistence. N = 50, the underlying function is f2, the number of

repetition is 500, and more details are in the text.

a 0 0.2 0.4 0.6 0.8 0.95

T=5

Mean 0.2430 0.2900 0.2883 0.6832 1.2472 4.7058
Median 0.2101 0.2133 0.2316 0.3459 0.8525 4.4740

SD 0.0835 0.1503 0.1499 0.9626 2.2988 8.2646

T=10

Mean 0.1256 0.1337 0.1711 0.5030 1.5994 6.2064
Median 0.1104 0.1184 0.1262 0.1996 0.7148 4.9632

SD 0.0384 0.0479 0.1125 0.8466 3.6882 10.1938

T=20

Mean 0.0816 0.0857 0.0956 0.2184 1.4612 7.5214
Median 0.0769 0.0776 0.0830 0.1116 0.4940 5.0920

SD 0.0206 0.0257 0.0424 0.3216 3.3534 11.9760

to caution against applying our estimator to panels of highly persistent time series.

To defend our methodology, we point out that the above data generating process is close

to the worst scenario of our estimator. When a = 0.95, the conditional distribution of Xit

given Xi,t−1 = v is Gaussian with mean 0.95v and standard deviation 0.44. Let v = 0, for

example, the conditional density p(u|v) is close to zero at {u : |u| > 0.44 · 4 = 1.56}. Recall

that we estimate functions on [−2, 2] and that p(u|v) is implicitly on the denominator of

the asymptotic variance.

4. Conclusions

In this paper we present a new methodology for estimating the nonlinear component of

semiparametric panel data models. Technically, we use first differencing transformation to

eliminate individual effects and use marginal integration to recover the nonlinear function of
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interest. We give the asymptotic properties of our estimator. And Monte Carlo simulations

show that our estimator performs reasonably well for finite samples.
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Härdle, W., E. Mammen 1993, Comparing nonparametric versus parametric regression

fits, Annals of Statistics, 21, 1926-1947.

Hengartner, N. W. and Sperlich, S., 2005, Rate optimal estimation with the integration

method in the presence of many covariates, Journal of Multivariate Analysis, 95,

246-272

Jones, M.C., S.J. Davies, B.U. Park, 1994, Versions of kernel-type regression estimators,

Journal of the American Statistical Association, 89(427), 825-832.

Kim, W., Linton, O.B., and Hengartner, N.W., 1999, A Computationally Efficient Oracle

Estimator for Additive Nonparametric Regression with Bootstrap Confidence Inter-

vals, Journal of Computational and Graphical Statistics, 8, 278-297.

Kneip, A., L. Simar, 1996, A general framework for frontier estimation with panel data,

Journal of Productivity Analysis, 7, 187-212.



29

Lee, Y., Mukherjee, D., 2008, New nonparametric estimation of the marginal effects in fixed

effects panel models: an application on the environmental Kuznets curve, Working

paper.

Li, K., 1987, Asymptotic Optimality for Cp, CL, Cross-Validation and Generalized Cross-

Validation, The Annals of Statistics, 15, 958-975

Li, Q., T. Stengos, 1996, Semiparametric estimation of partially linear panel data models,

Journal of Econometrics, 71(1-2), 389-397.

Linton, O.B., 1997, Efficient estimation of additive nonparametric regression models,

Biometrika, 84, 469-473
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Appendix I

Proof for Theorem 2: Theorem 1 establishes root-N consistency for β̂. In the following

we may treat Rit = ∆Yit −∆Z ′itβ as known. And we have

f̂(u)− f(u) =
∫

[m̂(u, v)−m(u, v)] q(v)dv,

where the integration is taken on C ⊂ Rd. Throughout the proof we suppress the domain

for notational simplicity. Let Υ = [eit] and M = [m(Xit, Xi,t−1)]. By standard argument

in multivariate kernel regression asymptotics, and the assumptions that (i) (Xit, eit) is

i.i.d. across i, (ii) (Xit is stationary over t with T fixed, (iii) p2 is continuously partially

differentiable, (iv) f (hence m) is at least twice continuously partially differentiable, and

other conditions on the kernel and the associated bandwidth matrix, we have

m̂(u, v)−m(u, v) = ι′(Γ′WΓ)−1Γ′WΥ

+ ι′


(Γ′WΓ)−1Γ′W (M − Γ




m(u, v)

Dm(u, v)


)


 + op(tr(H2)).

Let U1 and U2 denote the first and the second terms on the right, respectively. U2 gives us

the desired asymptotic bias, which is an integration of,

N2/(4+d) 1
2
µ2(k)tr

(
(I2 ⊗H2)Hm(u, v)

)
= N2/(4+d) 1

2
µ2(k)

[
tr

(
H2Hf (u)

)− tr
(
H2Hf (v)

)]

=
1
2
µ2(k)

[
tr

(
H2

0Hf (u)
)− tr

(
H2

0Hf (v)
)]

.
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We now examine U1. Let n = NT . We first write

U1 = ι′
(

1
n

Γ′WΓ
)−1 (

1
n

Γ′WΥ
)

.

Use the fact that Xit is stationary and T is fixed, we use standard arguments to obtain

ι′
(

1
n

Γ′WΓ
)−1

=
(

p−1
2 + op(1) −p−2

2
∂p2

∂u′ + op(1) −p−2
2

∂p2

∂v′ + op(1)

)
.

Note that op(1) is uniform, for which we require N |H|2 →∞, which means d < 4. Hence

U1 = (A1(u, v) + A2(u, v) + A3(u, v))(1 + op(1)),

where

A1(u, v) = p−1
2 (u, v)

1
n

N∑

i=1

T∑

t=1

KH(Xit − u)KH(Xi,t−1 − v)eit,

A2(u, v) = −
(

∂p2

∂u′
p−2
2

)
(u, v)

1
n

N∑

i=1

T∑

t=1

KH(Xit − u)KH(Xi,t−1 − v)(Xit − u)eit

A3(u, v) = −
(

∂p2

∂v′
p−2
2

)
(u, v)

1
n

N∑

i=1

T∑

t=1

KH(Xit − u)KH(Xi,t−1 − v)(Xi,t−1 − v)eit.

In the following, we show that

N2/(4+d)

∫
A1(u, v)q(v)dv →d N(0, V (u)),

and that N2/(4+d)
∫

A2(u, v)q(v)dv and N2/(4+d)
∫

A3(u, v)q(v)dv are negligible asymptoti-

cally.
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We first examine N2/(4+d)
∫

A1(u, v)q(v)dv,

N2/(4+d)

∫
A1(u, v)q(v)dv = N2/(4+d) 1

n

∑

i,t

eitKH(u−Xit)
∫

KH(v −Xi,t−1)
p2(u, v)

q(v)dv

= N2/(4+d) 1
n

∑

i,t

eitKH(u−Xit)
(

q(Xi,t−1)
p2(u,Xi,t−1)

+ op(tr(H))
)

=
1√
N

∑

i

ξi,N + op(1),

where ξi,N = N−d/(2(4+d))T−1
∑

t eitKH(u − Xit)q(Xi,t−1)p−1
2 (u,Xi,t−1). Note that the

integration on the right is a convolution involving the function KH which reduces to a

generalized delta function in the limit.

(ξi,N ) is a triangular array and it can be observed that for each N , (ξi,N ) are i.i.d. with

zero mean. Next we calculate the second moment. We write

E (ξi)
2 = N−d/(4+d)W1 + N−d/(4+d)W2,

where

W1 =
1
T 2
E

∑
t

e2
itK

2
H(u−Xit)q2(Xi,t−1)p−2

2 (u,Xi,t−1)

W2 =
1
T 2
E

∑

s 6=t

eiteisKH(u−Xit)KH(u−Xis)q(Xi,t−1)q(Xi,s−1)p−1
2 (u,Xi,t−1)p−1

2 (u,Xi,s−1)

For W1, we have

W1 =
1
T 2

∑
t

σ2
t

∫
1
|H|2 K(H−1(u− v))q2(y)p−2(u, y)p2(v, y)dvdy

=
σ̄2

T |H|
∫

K2(w)q2(y)p−2(u, y)p2(u + Hw, y)dwdy

=
σ̄2ϕd(k)
T |H|

∫
q2(y)p−1(u, y)dy(1 + op(1)).

Let p2,t,s(x, y, r, v) be the joint density of (X1t, X1,t−1, X1s, X1,s−1), and denote γt,s =
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Ee1te1s and γ̄ = T−2
∑

s 6=t γt,s. It is obvious that γ̄ < ∞. We have for W2,

W2 =
1
T 2

∑

s 6=t

γt,s

∫
KH(u− x)KH(u− r)

q(y)q(v)
p2(u, y)p2(u, v)

p2,t,s(x, y, r, v)dxdydrdz

= γ̄|H|−2

∫
K(H−1(u− x))K(H−1(u− r))

q(y)q(v)
p2(u, y)p2(u, v)

p2,t,s(x, y, r, v)dxdydrdz

= γ̄

∫
K(w)K(z)q(y)q(v)p−1

2 (u, y)p−1
2 (u, v)p2,t,s(u + Hw, y, u + Hz, v)dwdydzdv

= γ̄

∫
q(y)q(v)p−1

2 (u, y)p−1
2 (u, v)p2,t,s(u, y, u, v)dydv(1 + op(1)) < ∞

Hence

Eξ2
i = N−d/(4+d) σ̄

2ϕd(k)
T |H|

∫
q2(y)p−1(u, y)dy(1 + op(1)) + Op(N−d/(4+d))

=
σ̄2ϕd(k)
T |H0|

∫
q2(y)p−1(u, y)dy + op(1).

To see the asymptotic order of N2/(4+d)
∫

A2(u, v)q(v)dv, we only need to examine

N−d/(4+d)Ee2
itK

2
H(Xit − u)p−4

2 (u,Xi,t−1)
(

∂p2

∂u′
(u,Xi,t−1)(Xit − u)

)2

q2(Xi,t−1)

= N−d/(4+d) σ2
t

|H|2
∫

K2(H−1(v − u))p−4
2 (u, y)

(
∂p2

∂u′
(u, y)HH−1(v − u)

)2

q2(y)p2(v, y)dvdy

= N−d/(4+d) σ2
t

|H|
∫

K2(w)p−4
2

(
∂p2

∂u′
(u, y)H0w

)2

q2(y)p2(u + Hw, y)dwdy ·N−2/(4+d)

= Op(N−2/(4+d)).

Hence N2/(4+d)
∫

A2(u, v)q(v)dv is asymptotically negligible. Similarly we can check that

N2/(4+d)
∫

A3(u, v)q(v)dv is also negligible asymptotically.

To apply the Liapounov’s CLT to 1√
N

∑
i ξi,N , we need to check whether the following

holds for some constant ε > 0,

N∑

i=1

E|ξi,N/
√

N |2+ε → 0, as N →∞. (25)
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The above is equivalent to

N−ε/2E|ξ1,N |2+ε → 0, as N →∞.

Observe that | · |2+ε is a convex function, hence

|ξi,N |2+ε ≤ N−d(2+ε)/(2(4+d)) 1
T

T∑

t=1

∣∣eitKH(u−Xit)q(Xi,t−1)p−1
2 (u,Xi,t−1)

∣∣2+ε
.

And by the positiveness of k, q, and p2, and the independence of eit from (Xit), we have

E
∣∣eitKH(u−Xit)q(Xi,t−1)p−1

2 (u,Xi,t−1)
∣∣2+ε

= E |eit|2+ε E
∣∣KH(u−Xit)q(Xi,t−1)p−1

2 (u,Xi,t−1)
∣∣2+ε

= E |eit|2+ε |H|−(2+ε)

∫
K(2+ε)(H−1(u− x))q2+ε(y)p−(2+ε)

2 (u, y)p2(x, y)dxdy

= E |eit|2+ε |H|−(1+ε)

∫
K(2+ε)(w)q2+ε(y)p−(2+ε)

2 (u, y)p2(u + Hw, y)dwdy

= |H|−(1+ε)E |eit|2+ε
∫

K(2+ε)(w)dw

∫
q2+ε(y)p−(1+ε)

2 (u, y)dy(1 + op(1))

= O(N (1+ε)/(4+d)),

since both k and q are bounded, p2 is bounded from zero, and E |eit|2+ε ≤ (
E|eit|4+2ε

)1/2
<

∞. Hence

N−ε/2E|ξ1,N |2+ε = O(N−(1+ε)(d−1)/(4+d)−2ε/(4+d)) = o(1).

Hence the condition in (25) is verified. Now we apply the Liapunov’s CLT to the triangular

array (ξi,N ) and obtain the desired asymptotic distribution.


