15 research outputs found

    Comparative analysis of the fecal microbiota from different species of domesticated and wild suids

    Get PDF
    This study was supported by the Ministry of Economy and Competitiveness (MINECO) from the Spanish Government (grant number AGL2016-78160-C2-1-R). The authors are also grateful to the Centres de Recerca de Catalunya (CERCA) Programme and Global Alliance for Research on African swine fever (GARA). The authors thank Frederic Paboeuf and Audrey Fougeroux for providing SPF and domestic pig samples.Most of the microorganisms living in a symbiotic relationship in different animal body sites (microbiota) reside in the gastrointestinal tract (GIT). Several studies have shown that the microbiota is involved in host susceptibilities to pathogens. The fecal microbiota of domestic and wild suids was analyzed. Bacterial communities were determined from feces obtained from domestic pigs (Sus scrofa) raised under different conditions: specific-pathogen-free (SPF) pigs and domestic pigs from the same bred, and indigenous domestic pigs from a backyard farm in Kenya. Secondly, the fecal microbiota composition of the African swine fever (ASF) resistant warthogs (Phacochoerus africanus) from Africa and a European zoo was determined. African swine fever (ASF) is a devastating disease for domestic pigs. African animals showed the highest microbial diversity while the SPF pigs the lowest. Analysis of the core microbiota from warthogs (resistant to ASF) and pigs (susceptible to ASF) showed 45 shared OTUs, while 6 OTUs were exclusively present in resistant animals. These six OTUs were members of the Moraxellaceae family, Pseudomonadales order and Paludibacter, Anaeroplasma, Petrimonas, and Moraxella genera. Further characterization of these microbial communities should be performed to determine the potential involvement in ASF resistance

    CP7_E2alf oral vaccination confers partial protection against early classical swine fever virus challenge and interferes with pathogeny-related cytokine responses.

    Get PDF
    &lt;p&gt;The conventional C-strain vaccine induces early protection against classical swine fever (CSF), but infected animals cannot be distinguished from vaccinated animals. The CP7_E2alf marker vaccine, a pestivirus chimera, could be a suitable substitute for C-strain vaccine to control CSF outbreaks. In this study, single oral applications of CP7_E2alf and C-strain vaccines were compared for their efficacy to induce protection against a CSF virus (CSFV) challenge with the moderately virulent Bas-Rhin isolate, in pigs as early as two days post-immunization. This work emphasizes the powerful potential of CP7_E2alf vaccine administered orally by a rapid onset of partial protection similar to that induced by the C-strain vaccine. Furthermore, our results revealed that both vaccinations attenuated the effects induced by CSFV on production of the pig major acute phase protein (PigMAP), IFN-α, IL-12, IL-10, and TGF-β1 cytokines. By this interference, several cytokines that may play a role in the pathogeny induced by moderately virulent CSFV strains were revealed. New hypotheses concerning the role of each of these cytokines in CSFV pathogeny are discussed. Our results also show that oral vaccination with either vaccine (CP7_E2alf or C-strain) enhanced CSFV-specific IgG2 production, compared to infection alone. Interestingly, despite the similar antibody profiles displayed by both vaccines post-challenge, the production of CSFV-specific IgG1 and neutralizing antibodies without challenge was lower with CP7_E2alf vaccination than with C-strain vaccination, suggesting a slight difference in the balance of adaptive immune responses between these vaccines.&lt;/p&gt;</p

    Cytokine and immunoglobulin isotype profiles during CP7_E2alf vaccination against a challenge with the highly virulent Koslov strain of classical swine fever virus.

    No full text
    &lt;p&gt;CP7_E2alf is a promising marker vaccine candidate against classical swine fever (CSF). To better understand the mechanisms of protection, cytokine and isotype-specific antibody profiles were investigated in CP7_E2alf vaccinated pigs before and after challenge with the highly virulent CSFV strain &quot;Koslov&quot; at 14 days or 6 months post-vaccination. The interference of vaccination with CSFV pathogeny-related cytokine responses, previously described following a moderately virulent challenge, was confirmed. However, the levels of additional cytokines, TNF-α and IL-6, were significantly attenuated by vaccination following highly virulent challenge. This vaccine interference with cytokine response was not dependent on the immunization route or the consequence of competition between vaccine and challenge strain. Interestingly, IFN-γ enhancement and persistent high IgG2 levels suggested an important role of cell-mediated immunity in long-term protection against CSFV induced by CP7_E2alf vaccination. IgA production also revealed a stimulation of mucosal immunity, especially after oral administration of the vaccine.&lt;/p&gt;</p

    Validation of two commercial real-time RT-PCR kits for rapid and specific diagnosis of classical swine fever virus.

    No full text
    &lt;p&gt;Two real-time RT-PCR kits, developed by LSI (TaqVet CSF) and ADIAGENE (Adiavet CSF), obtained an agreement to be commercialised in France, subject to conditions, defined by the French Classical Swine Fever (CSF) National Reference Laboratory. The producers were asked to introduce an internal control to check the RNA extraction efficacy. The different criteria assessed were sensitivity, &quot;pestivirus specificity&quot;, reproducibility and ease of handling, using 189 different samples. These samples were either CSFV inactivated strains or blood/serum/organs collected from CSFV experimentally infected pigs or naturally infected wild boars. The reproducibility of the assays was confirmed by the analysis of a batch-to-batch panel control that was used for inter-laboratory tests involving nine laboratories. The two kits were also tested for the use in mass diagnostics and the results proved the kits to be suited using pools of blood, serum and tonsils. Moreover, a field evaluation, carried out on spleen samples collected from the CSF surveillance of wild boars in an area known to be infected and from domestic pigs at a slaughterhouse, confirmed the high sensitivity and specificity of the two kits. This step-by-step evaluation procedure confirmed that the two commercial CSF real-time RT-PCR kits have a higher predictive value than the current diagnostic standard, Virus Isolation.&lt;/p&gt;</p

    Controlling of CSFV in European wild boar using oral vaccination: a review.

    Get PDF
    &lt;p&gt;Classical swine fever (CSF) is among the most detrimental diseases for the swine industry worldwide. Infected wild boar populations can play a crucial role in CSF epidemiology and controlling wild reservoirs is of utmost importance for preventing domestic outbreaks. Oral mass vaccination (OMV) has been implemented to control CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of vaccination experiences illustrates the potential for that option. The C-strain live vaccine was confirmed to be highly efficacious and palatable baits were developed for oral delivery in free ranging wild boars. The first field trials were performed in Germany in the 1990&#039;s and allowed deploying oral baits at a large scale. The delivery process was further improved during the 2000&#039;s among different European countries. Optimal deployment has to be early regarding disease emergence and correctly designed regarding the landscape structure and the natural food sources that can compete with oral baits. OMV deployment is also highly dependent on a local veterinary support working closely with hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy for CSF control in free ranging wild boar when vaccination is wide spread and lasting for a sufficient period of time. Alternative disease control strategies such as intensified hunting or creating physical boundaries such as fences have been, in contrast, seldom satisfactory and reliable. However, monitoring outbreaks has been challenging during and after vaccination deployment since OMV results in a low probability to detect virus-positive animals and the live-vaccine currently available does not allow serological differentiation of infected from vaccinated animals. The development of a new marker vaccine and companion test is thus a promising option for better monitoring outbreaks during OMV deployment as well as help to better determine when to stop vaccination efforts. After rabies in red fox, the use of OMV against CSF in European wild boar can be considered as a second example of successful disease control in wildlife. The 30 years of disease control experience included in this review may provide options for improving future disease management within wild populations.&lt;/p&gt;</p

    Proof of concept for the reduction of classical swine fever infection in pigs by a novel viral polymerase inhibitor.

    No full text
    &lt;p&gt;5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP) is a representative of a class of imidazopyridines with potent in vitro antiviral activity against pestiviruses including classical swine fever virus (CSFV). This study analysed whether the lead compound, BPIP, was able to reduce virus replication in infected piglets. The compound, administered in feed, was readily bioavailable and was well tolerated. Eight specific-pathogen-free pigs received a daily dose of 75 mg kg(-1) (mixed in feed) for a period of 15 consecutive days, starting 1 day before infection with the CSFV field isolate Wingene. BPIP-treated pigs developed a short, transient viraemia (one animal remained negative) and leukopenia (three animals did not develop leukopenia). Virus titres at peak viraemia (7 days post-infection) were markedly lower (approximately 1000-fold) than in untreated animals (P=0.00005) and the viral genome load in blood was also significantly lower (P&lt;or=0.001) in drug-treated animals than in untreated animals over the entire experiment. At the end of the experiment (day 33), no infectious virus was detectable in the tonsils of BPIP-treated animals, although low levels of viral RNA were detected. The inability to isolate infectious virus from the tonsils indicates that the risk of a persistent CSFV infection is negligible. Further optimization of the antiviral potency and bioavailability of this lead compound may result in molecules completely suppressing virus replication. A potent antiviral could potentially be used as a primary control measure against virus spread in case of an outbreak, in addition to present countermeasures. This study provides the first proof of concept for the prophylaxis/treatment of CSFV infection in pigs.&lt;/p&gt;</p
    corecore