41 research outputs found

    Manifestation of coherent magnetic anisotropy in a carbon nanotube matrix with low ferromagnetic nanoparticle content

    Get PDF
    The influence of the magnetic medium can lead to peculiar interaction between ferromagnetic nanoparticles (NPs). Most research in this area involves analysis of the interplay between magnetic anisotropy and exchange coupling. Increasing the average interparticle distance leads to the dominant role of the random magnetic anisotropy. Here we study the interparticle interaction in a carbon nanotube (CNT) matrix with low ferromagnetic NP content. Samples were synthesized by floating catalyst chemical vapor deposition. We found that below some critical NP concentration, when NPs are intercalated only inside CNTs, and at low temperatures, the extended magnetic order, of up to 150 nm, presents in our samples. It is shown by analyzing the correlation functions of the magnetic anisotropy axes that the extended order is not simply due to random anisotropy but is associated with the coherent magnetic anisotropy, which is strengthened by the CNT alignment. With increasing temperature the extended magnetic order is lost. Above the critical NP concentration, when NPs start to be intercalated not only into inner CNT channels, but also outside CNTs, the coherent anisotropy weakens and the exchange coupling dominates in the whole temperature range. We can make a connection with the various correlation functions using the generalized expression for the law of the approach to saturation and show that these different correlation functions reflect the peculiarities in the interparticle interaction inside CNTs. Moreover, we can extract such important micromagnetic parameters like the exchange field, local fields of random and coherent anisotropies, as well as their temperature and NP concentration dependencies

    Interplay between exchange interaction and magnetic anisotropy for iron based nanoparticles in aligned carbon nanotube arrays

    No full text
    In this work, we investigate magnetic properties of iron based nanoparticles (NP) intercalated into carbon nanotube (CNT) aligned arrays synthesized by injection chemical vapor deposition. We have analyzed the temperature (T) and the ferrocene concentration (CF) dependences of the macroscopic magnetic parameters. From these experiments a weaker interaction between magnetic moments of NP was obtained for low CF values. The random anisotropy model for the experimental data analysis was applied and micromagnetic parameters were evaluated. The law of the approach to magnetic saturation (LAS) was analyzed using the general expression with the correlation function C(r = x/Ra) of magnetic axes, Ra being the magnetic anisotropy correlation length. We obtained that, while for CF = 0.5% C(r) is a step-like (C(r 10) = 0), for CF P1% C(r) decays rapidly on a short range, (2-3)Ra. Such extended correlations for CF = 0.5% could be associated with the dominant role of the coherent anisotropy, which is caused by the influence of the alignment of CNT. When the aligned CNTs for CF = 0.5% are destroyed into powder, the LAS is changed to H-1/2, which means the dominant role of the exchange mechanism

    Circulating tumor DNA is a prognostic marker of tumor recurrence in stage II and III colorectal cancer: multicentric, prospective cohort study (ALGECOLS)

    No full text
    International audienceBackground: In non-metastatic colorectal cancer (CRC), we evaluated prospectively the pertinence of longitudinal detection and quantification of circulating tumor DNA (ctDNA) as a prognostic marker of recurrence. Method: The presence of ctDNA was assessed from plasma collected before and after surgery for 184 patients classified as stage II or III and at each visit during 3–4 years of follow-up. The ctDNA analysis was performed by droplet-based digital polymerase chain reaction, targeting mutation and methylation markers, blindly from the clinical outcomes. Multivariate analyses were adjusted on age, gender, stage, and adjuvant chemotherapy. Results: Before surgery, 27.5% of patients were positive for ctDNA detection. The rate of recurrence was 32.7% and 11.6% in patients with or without detectable ctDNA respectively (P = 0.001). Time to recurrence (TTR) was significantly shorter in patients with detectable ctDNA before (adjusted hazard ratio [HR] = 3.58, 95% confidence interval [CI] 1.71–7.47) or immediately after surgery (adjusted HR = 3.22, 95% CI 1.32–7.89). The TTR was significantly shorter in patients with detectable ctDNA during the early postoperative follow-up (1–6 months) (adjusted HR = 5, 95% CI 1.9–12.9). Beyond this period, ctDNA remained a prognostic marker with a median anticipated diagnosis of recurrence of 13.1 weeks (interquartile range 28 weeks) when compared to imaging follow-up. The rate of ctDNA+ might be underestimated knowing that consensus pre-analytical conditions were not described at initiation of the study. Conclusion: This prospective study confirms the relevance of ctDNA as a recurrence risk factor in stage II and III CRC before surgery and as a marker of minimal residual disease after surgery that may predict recurrence several months before imaging techniques

    Decreased darunavir concentrations during once-daily co-administration with maraviroc and raltegravir: OPTIPRIM-ANRS 147 trial

    No full text
    International audienceBackgroundThe OPTIPRIM-ANRS 147 trial compared intensive combination ART (darunavir/ritonavir, tenofovir disoproxil fumarate/emtricitabine, raltegravir and maraviroc) started early during primary HIV-1 infection with standard tritherapy with darunavir/ritonavir, tenofovir disoproxil fumarate and emtricitabine. From month 6 to 18, the percentage of viral load values <50 copies/mL was lower in the pentatherapy arm than in the tritherapy arm. Here we compared antiretroviral drug concentrations between the two arms.MethodsPlasma samples were collected from 50 patients at various times after drug administration. A Bayesian approach based on published population pharmacokinetic models was used to estimate residual drug concentrations (Ctrough) and exposures (AUC) in each patient. A mixed linear regression model was then used to compare the AUC and Ctrough values of each drug used in both groups.ResultsPublished models adequately described our data and could be used to predict Ctrough and AUC. No significant difference in tenofovir disoproxil fumarate, emtricitabine and ritonavir parameters was found between the two arms. However, darunavir Ctrough and AUC were significantly lower in the pentatherapy arm than in the tritherapy arm (P = 0.03 and P = 0.04, respectively).ConclusionsAdding maraviroc and raltegravir to darunavir-based tritherapy decreased darunavir concentrations. Compliance issues, maraviroc–darunavir interaction and raltegravir–darunavir interaction were suspected and may affect the kinetics of viral decay during pentatherapy. A specific pharmacokinetic interaction study is needed to explore the interactions between darunavir and maraviroc and raltegravir
    corecore