50 research outputs found

    1, 9-Pyrazoloanthrones Downregulate HIF-1α and Sensitize Cancer Cells to Cetuximab-Mediated Anti-EGFR Therapy

    Get PDF
    Cetuximab, a monoclonal antibody that blocks the epidermal growth factor receptor (EGFR), is currently approved for the treatment of several types of solid tumors. We previously showed that cetuximab can inhibit hypoxia-inducible factor-1 alpha (HIF-1α) protein synthesis by inhibiting the activation of EGFR downstream signaling pathways including Erk, Akt, and mTOR. 1, 9-pyrazoloanthrone (1, 9 PA) is an anthrapyrazolone compound best known as SP600125 that specifically inhibits c-jun N-terminal kinase (JNK). Here, we report 1, 9 PA can downregulate HIF-1α independently of its inhibition of JNK. This downregulatory effect was abolished when the oxygen-dependent domain (ODD) of HIF-1α (HIF-1α-ΔODD, the domain responsible for HIF-1α degradation) was experimentally deleted or when the activity of HIF-1α prolyl hydroxylase (PHD) or the 26S proteasomal complex was inhibited, indicating that the 1, 9 PA downregulates HIF-1α by promoting PHD-dependent HIF-1α degradation. We found that the combination of 1, 9 PA and cetuximab worked synergistically to induce apoptosis in cancer cells in which cetuximab or 1, 9 PA alone had no or only weak apoptotic activity. This synergistic effect was substantially decreased in cancer cells transfected with HIF-1α-ΔODD, indicating that downregulation of HIF-1α was the mechanism of this synergistic effect. More importantly, 1, 9 PA can downregulate HIF-1α in cancer cells that are insensitive to cetuximab-induced inhibition of HIF-1α expression due to overexpression of oncogenic Ras (RasG12V). Our findings suggest that 1, 9 PA is a lead compound of a novel class of drugs that may be used to enhance the response of cancer cells to cetuximab through a complementary effect on the downregulation of HIF-1α

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
    corecore