4 research outputs found

    PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2

    Get PDF
    The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant

    Aurora-A-Dependent control of TACC3 influences the rate of mitotic spindle assembly

    No full text
    The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.This work was funded by: Cancer Research UK (C24461/A12772 to RB and C14303/ A17197 to FG) http://www.cancerresearchuk.org Medical Research Council (G0800021) to RB http:// www.mrc.ac.uk Royal Society University Research Fellowships to FG and RB. http://www.royalsoc.ac.uk University of Cambridge to FG http://www.cam.ac.uk Hutchison-Whampoa to FG http://www.hutchisonwhampoa.com/en/media/press_each.php?id=2025 Spanish Ministry of Economy and Competitiveness (BFU2009-10202 and BFU2012-37163) to IV and (BES-2010-031355) to TC and ('Centro de Excelencia Severo Ochoa 2013-2017', SEV-2012- 0208) to the CRG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Aurora A kinase (AURKA) in normal and pathological cell division

    No full text

    Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans

    No full text
    corecore