78,333 research outputs found

    Kolmogorov-Smirnov method for the determination of signal time-shifts

    Full text link
    A new method for the determination of electric signal time-shifts is introduced. As the Kolmogorov-Smirnov test, it is based on the comparison of the cumulative distribution functions of the reference signal with the test signal. This method is very fast and thus well suited for on-line applications. It is robust to noise and its performances in terms of precision are excellent for time-shifts ranging from a fraction to several sample durations. PACS. 29.40.Gx (Tracking and position-sensitive detectors), 29.30.Kv (X- and -ray spectroscopy), 07.50.Qx (Signal processing electronics)Comment: 8 pages, 7 figure

    Carbon stars in the IRTS survey

    Full text link
    We have identified 139 cool carbon stars in the near-infrared spectro-photometric survey of the InfraRed Telescope in Space (IRTS) from the conspicuous presence of molecular absorption bands at 1.8, 3.1 and 3.8 microns. Among them 14 are new, bright (K ~ 4.0-7.0), carbon stars. We find a trend relating the 3.1 microns band strength to the K-L' color index, which is known to correlate with mass-loss rate. This could be an effect of a relation between the depth of the 3.1 microns feature and the degree of development of the extended stellar atmosphere where dust starts to form.Comment: accepted by the PASP; December 7, 200

    General Relation between Entanglement and Fluctuations in One Dimension

    Full text link
    In one dimension very general results from conformal field theory and exact calculations for certain quantum spin systems have established universal scaling properties of the entanglement entropy between two parts of a critical system. Using both analytical and numerical methods, we show that if particle number or spin is conserved, fluctuations in a subsystem obey identical scaling as a function of subsystem size, suggesting that fluctuations are a useful quantity for determining the scaling of entanglement, especially in higher dimensions. We investigate the effects of boundaries and subleading corrections for critical spin and bosonic chains.Comment: 4 pages, 2 figures. Minor changes, references added

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Fast analytical methods for the correction of signal random time-shifts and application to segmented HPGe detectors

    Full text link
    Detection systems rely more and more on on-line or off-line comparison of detected signals with basis signals in order to determine the characteristics of the impinging particles. Unfortunately, these comparisons are very sensitive to the random time shifts that may alter the signal delivered by the detectors. We present two fast algebraic methods to determine the value of the time shift and to enhance the reliability of the comparison to the basis signals.Comment: 13 pages, 8 figure

    Secure information transmission and power transfer in cellular networks

    Get PDF
    This letter studies simultaneous data transmission and power transfer for multiple information receivers (IRs) and energy-harvesting receivers (ERs) in cellular networks. We formulate an optimization problem to minimize the total transmit power across the network subject to the following three sets of constraints: i) data reliability by maintaining the required level of signal to interference plus noise ratio (SINR) for all IRs; ii) information security by keeping all SINR levels of the intended IRs measured at each ER below a predefined value, which helps prevent possible eavesdroppers, i.e., ERs, from detecting information aimed for the IRs; and iii) energy harvesting by guaranteeing the required level of received power at each ER. Using semidefinite relaxation technique, the proposed problem is then transformed into a convex form which is proved to always yield rank-one optimal solution

    Differential spatial modulation for high-rate transmission systems

    Get PDF
    This paper introduces a new differential spatial modulation (DSM) scheme which subsumes both the previously introduced DSM and high-rate spatial modulation (HR-SM) for wireless multiple input multiple output (MIMO) transmission. By combining the codeword design method of the HR-SM scheme with the encoding method of the DSM scheme, we develop a high-rate differential spatial modulation (HR-DSM) scheme equipped with an arbitrary number of transmit antennas that requires channel state information (CSI) neither at the transmitter nor at the receiver. The proposed approach can be applied to any equal energy signal constellations. The bit error rate (BER) performance of the proposed HR-DSM schemes is evaluated by using both theoretical upper bound and computer simulations. It is shown that for the same spectral efficiency and antenna configuration, the proposed HR-DSM outperforms the DSM in terms of bit error rate (BER) performance

    A successive optimization approach to pilot design for multi-cell massive MIMO systems

    Get PDF
    In this letter, we introduce a novel pilot design approach that minimizes the total mean square errors of the minimum mean square error estimators of all base stations (BSs) subject to the transmit power constraints of individual users in the network, while tackling the pilot contamination in multicell Massive MIMO systems. First, we decompose the original non-convex problem into distributed optimization sub-problems at individual BSs, where each BS can optimize its own pilot signals given the knowledge of pilot signals from the remaining BSs. We then introduce a successive optimization approach to transform each optimization sub-problem into a linear matrix inequality (LMI) form, which is convex and can be solved by available optimization packages. Simulation results confirm the fast convergence of the proposed approach and prevails a benchmark scheme in terms of providing higher accuracy
    • …
    corecore