10,204 research outputs found
Degeneracy of Landau Level and Quantum Group SL_q(2)
We show that there is a kind of quantum group symmetry in the
usual Landau problem and it is this quantum group symmetry that governs the
degeneracy of Landau levels. We find that under the periodic boundary
condition, the degree of degeneracy of Landau levels is finite, and it just
equals the dimension of the irreducible cyclic representation of the quantum
group .Comment: 10 pages, Preprint ( reprint ) of Nankai Institute of Mathematics.
For hard copy, write to Prof. Mo-lin GE, Director of Nankai Institute of
Mathematics. Do not send emails to this computer accoun
Control System Design of Shunt Active Power Filter Based on Active Disturbance Rejection and Repetitive Control Techniques
To rely on joint active disturbance rejection control (ADRC) and repetitive control (RC), in this paper, a compound control law for active power filter (APF) current control system is proposed. According to the theory of ADRC, the uncertainties in the model and from the circumstance outside are considered as the unknown disturbance to the system. The extended state observer can evaluate the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result
Predicting Aesthetic Score Distribution through Cumulative Jensen-Shannon Divergence
Aesthetic quality prediction is a challenging task in the computer vision
community because of the complex interplay with semantic contents and
photographic technologies. Recent studies on the powerful deep learning based
aesthetic quality assessment usually use a binary high-low label or a numerical
score to represent the aesthetic quality. However the scalar representation
cannot describe well the underlying varieties of the human perception of
aesthetics. In this work, we propose to predict the aesthetic score
distribution (i.e., a score distribution vector of the ordinal basic human
ratings) using Deep Convolutional Neural Network (DCNN). Conventional DCNNs
which aim to minimize the difference between the predicted scalar numbers or
vectors and the ground truth cannot be directly used for the ordinal basic
rating distribution. Thus, a novel CNN based on the Cumulative distribution
with Jensen-Shannon divergence (CJS-CNN) is presented to predict the aesthetic
score distribution of human ratings, with a new reliability-sensitive learning
method based on the kurtosis of the score distribution, which eliminates the
requirement of the original full data of human ratings (without normalization).
Experimental results on large scale aesthetic dataset demonstrate the
effectiveness of our introduced CJS-CNN in this task.Comment: AAAI Conference on Artificial Intelligence (AAAI), New Orleans,
Louisiana, USA. 2-7 Feb. 201
Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets
AbstractThe probability hypothesis density (PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation (APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter (PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches
- …