535 research outputs found

    Giant negative magnetoresistance of spin polarons in magnetic semiconductors–chromium-doped Ti2O3 thin films

    Get PDF
    Epitaxial Cr-doped Ti2O3 films show giant negative magnetoresistance up to –365% at 2 K. The resistivity of the doped samples follows the behavior expected of spin (magnetic) polarons at low temperature. Namely, rho= rho0 exp(T0/T)p, where p = 0.5 in zero field. A large applied field quenches the spin polarons and p is reduced to 0.25 expected for lattice polarons. The formation of spin polarons is an indication of strong exchange coupling between the magnetic ions and holes in the system

    A Model of Vietnamese Person Named Entity

    Get PDF

    A RESEARCH ON MULTI-OBJECTIVE OPTIMIZATION OF THE GRINDING PROCESS USING SEGMENTED GRINDING WHEEL BY TAGUCHI-DEAR METHOD

    Get PDF
    In this study, the mutil-objective optimization was applied for the surface grinding process of SAE420 steel. The aluminum oxide grinding wheels that were grooved by 15 grooves, 18 grooves, and 20 grooves were used in the experimental process. The Taguchi method was applied to design the experimental matrix. Four input parameters that were chosen for each experiment were the number of grooves in cylinder surface of grinding wheel, workpiece velocity, feed rate, and cutting depth. Four output parameters that were measured for each experimental were the machining surface roughness, the system vibrations in the three directions (X, Y, Z). The DEAR technique was applied to determine the values of the input parameters to obtaine the minimum values of machining surface roughness and vibrations in three directions. By using this technique, the optimum values of grinding wheel groove number, workpiece velocity, feed-rate, cutting depth were 18 grooves, 15 m/min, 2 mm/stroke, and 0.005 mm, respectively. The verified experimental was performed by using the optimum values of input parameters. The validation results of surface roughness and vibrations in X, Y, Z directions were 0.826 (µm), 0.531 (µm), 0.549 (µm), and 0. 646 (µm), respectively. These results were great improved in comparing to the normal experimental results. Taguchi method and DEAR technique can be applied to improve the quality of grinding surface and reduce the vibrations of the technology system to restrain the increasing of the cutting forces in the grinding process. Finally, the research direction was also proposed in this stud

    Software coupling and Orchestration Tool to the Modeling of Multi-physic Problem

    Get PDF
    International audienceWe present in this paper Scot, which is a modular software solution for weakly coupling models, methods and orchestration of the simulation. The goal behind Scot is to make easier the phase of modeling and optimize the phase of simulation by tuning the solvers simulation parameters. Specifications and composition of Scot will be described. Scot has been successfully validated by two different applications, the PEEC-MoM coupling to the modeling of an electromagnetic device and the magneto-mechanic coupling to the modeling of deformable nano-switch contact NEMS

    Robust Adaptive Cerebellar Model Articulation Controller for 1-DOF Nonlaminated Active Magnetic Bearings

    Get PDF
    This paper presents a robust adaptive cerebellar model articulation controller (RACMAC) for 1-DOF nonlaminated active magnetic bearings (AMBs) to achieve desired positions for the rotor using a robust sliding mode control based. The dynamic model of 1-DOF nonlaminated AMB is introduced in fractional order equations. However, it is challenging to design a controller based on the model\u27s parameters due to undefined components and external disturbances such as eddy current losses in the actuator, external disturbance, variant parameters of the model while operating. In order to tackle the problem, RACMAC, which has a cerebellar model to estimate nonlinear disturbances, is investigated to resolve this problem. Based on this estimation, a robust adaptive controller that approximates the ideal and compensation controllers is calculated. The online parameters of the neural network are adjusted using Lyapunov\u27s stability theory to ensure the stability of system. Simulation results are presented to demonstrate the effectiveness of the proposed controller.The simulation results indicate that the CMAC multiple nonlinear multiple estimators are close to the actual nonlinear disturbance value, and the effectiveness of the proposed RACMAC method compared with the FOPID and SMC controllers has been studied previously

    Computation of electromagnetic forces in the windings of amorphous core transformers

    Get PDF
    Electromagnetic forces generated by the short circuit current and leakage flux in low- and high-voltage windings of distribution transformers as well as amorphous core transformers will cause the translation, destruction, and explosion of the windings. Thus, the investigation of these forces plays a significant role for researchers and manufacturers. Many authors have recently used the finite element method to analyze electromagnetic forces. In this paper, an analytic model is first developed for magnetic vector potential formulations to compute the electromagnetic forces (i.e., axial and radial forces) acting on the low- and high-voltage windings of an amorphous core transformer. The finite element technique is then presented to validate the results obtained from the analytical model. The developed model is applied to an actual problem
    • …
    corecore