104 research outputs found

    Asymptotic behavior of Structures made of Plates

    Full text link
    The aim of this work is to study the asymptotic behavior of a structure made of plates of thickness 2δ2\delta when δ0\delta\to 0. This study is carried on within the frame of linear elasticity by using the unfolding method. It is based on several decompositions of the structure displacements and on the passing to the limit in fixed domains. We begin with studying the displacements of a plate. We show that any displacement is the sum of an elementary displacement concerning the normal lines on the middle surface of the plate and a residual displacement linked to these normal lines deformations. An elementary displacement is linear with respect to the variable xx3. It is written U(x)+R(x)x3e3U(^x)+R(^x)\land x3e3 where U is a displacement of the mid-surface of the plate. We show a priori estimates and convergence results when δ0\delta \to 0. We characterize the limits of the unfolded displacements of a plate as well as the limits of the unfolded of the strained tensor. Then we extend these results to the structures made of plates. We show that any displacement of a structure is the sum of an elementary displacement of each plate and of a residual displacement. The elementary displacements of the structure (e.d.p.s.) coincide with elementary rods displacements in the junctions. Any e.d.p.s. is given by two functions belonging to H1(S;R3)H1(S;R3) where S is the skeleton of the structure (the plates mid-surfaces set). One of these functions : U is the skeleton displacement. We show that U is the sum of an extensional displacement and of an inextensional one. The first one characterizes the membrane displacements and the second one is a rigid displacement in the direction of the plates and it characterizes the plates flexion. Eventually we pass to the limit as δ0\delta \to 0 in the linearized elasticity system, on the one hand we obtain a variational problem that is satisfied by the limit extensional displacement, and on the other hand, a variational problem satisfied by the limit of inextensional displacements

    On the variational limits of lattice energies on prestrained elastic bodies

    Full text link
    We study the asymptotic behaviour of the discrete elastic energies in presence of the prestrain metric GG, assigned on the continuum reference configuration Ω\Omega. When the mesh size of the discrete lattice in Ω\Omega goes to zero, we obtain the variational bounds on the limiting (in the sense of Γ\Gamma-limit) energy. In case of the nearest-neighbour and next-to-nearest-neibghour interactions, we derive a precise asymptotic formula, and compare it with the non-Euclidean model energy relative to GG

    Nonlinear weakly curved rod by Γ-Convergence

    Get PDF
    We present a nonlinear model of weakly curved rod, namely the type of curved rod where the curvature is of the order of the diameter of the cross-section. We use an approach analogous to the one for rods and curved rods and start from the strain energy functional of three dimensional nonlinear elasticity. We do not impose any constitutional behavior of the material and work in a general framework. To derive the model, by means of Γ-convergence, we need to set the order of strain energy (i.e., its relation to the thickness of the body h). We analyze the situation when the strain energy (divided by the order of volume) is of the order h 4. This is the same approach as the one used in Föppl-von Kármán model for plates and the analogous model for rods. The obtained model is analogous to Marguerre-von Kármán for shallow shells and its linearization is the linear shallow arch model which can be found in the literature

    Asymptotic analysis of an elastic rod with rounded ends

    Get PDF
    We derive a one-dimensional model for an elastic shuttle, that is, a thin rod with rounded ends and small fixed terminals, by means of an asymptotic procedure of dimension reduction. In the model, deformation of the shuttle is described by a system of ordinary differential equations with variable degenerating coefficients, and the number of the required boundary conditions at the end points of the one-dimensional image of the rod depends on the roundness exponent m is an element of(0,1). Error estimates are obtained in the case m is an element of(0,1/4) by using an anisotropic weighted Korn inequality, which was derived in an earlier paper by the authors. We also briefly discuss boundary layer effects, which can be neglected in the case m is an element of(0,1/4) but play a crucial role in the formulation of the limit problem for m >= 1/4.Peer reviewe
    corecore