3,630 research outputs found

    Suppression of breast cancer cell growth by Na(+)/H(+ )exchanger regulatory factor 1 (NHERF1)

    Get PDF
    INTRODUCTION: Na(+)/H(+ )exchanger regulatory factor 1 (NHERF1, also known as EBP50 or NHERF) is a putative tumour suppressor gene in human breast cancer. Located at 17q25.1, NHERF1 is frequently targeted during breast tumourigenesis. Loss of heterozygosity (LOH) at the NHERF1 locus is found in more than 50% of breast tumours. In addition, NHERF1 is mutated in a subset of primary breast tumours and breast cancer cell lines. LOH at the NHERF1 locus is strongly associated with aggressive features of breast tumours, implicating NHERF1 as a haploinsufficiency tumour suppressor gene. However, the putative NHERF1 tumour suppressor activity has not been functionally verified. METHODS: To confirm the NHERF1 tumour suppressor activity suggested by our genetic analyses, we used retrovirus-transduced short hairpin RNA (shRNA) to knock down NHERF1 expression in breast cancer cell lines MCF7 and T47D. These cells were then assessed for cell growth in vitro and in vivo. The control and NHERF1 knockdown cells were also serum-starved and re-fed to compare their cell cycle progression as measured by fluorescence-activated cell sorting analyses. RESULTS: We found that downregulation of the endogenous NHERF1 in T47D or MCF7 cells resulted in enhanced cell proliferation in both anchorage-dependent and -independent conditions compared with that of the vector control cells. NHERF1 knockdown T47D cells implanted at mammary fat pads of athymic mice formed larger tumours than did control cells. We found that serum-starved NHERF1 knockdown cells had a faster G(1)-to-S transition after serum re-stimulation than the control cells. Immunoblotting showed that the accelerated cell cycle progression in NHERF1 knockdown cells was accompanied by increased expression of cyclin E and elevated Rb phosphorylation level. CONCLUSION: Our findings suggested that the normal NHERF1 function in mammary epithelial cells involves blockage of cell cycle progression. Our study affirmed the tumour suppressor activity of NHERF1 in breast which may be related to its regulatory effect on cell cycle. It warrants future investigation of this novel tumour suppressor pathway in human breast cancer which may turn up therapeutic opportunities

    Structure-property relations of 55nm particle-toughened epoxy

    Get PDF
    55-nm rubber particles significantly toughened two epoxy systems without loss of Young’s modulus, tensile strength and glass transition temperature. Transmission Electron Microscopy (TEM) showed that the nanoparticles are uniformly dispersed in matrix and have blurred interface with epoxy. 5 wt% rubber nanoparticles increased the critical strain energy release rate (G1c) of Jeffamine D230 (J230)-cured epoxy from 175 J/m2 to 1710 J/m2 , while the 10 wt% increased G1c of diaminodiphenyl sulfone (DDS)-cured epoxy from 73 J/m2 to 696 J/m2 . This is explained by comparing the surface–surface interparticle distance and total particle surface of nanocomposites with those of composites. The higher the matrix stiffness, the more nanoparticles needed for toughening. Although the 10 wt% J230-cured nanocomposite showed a 50% larger size of stress-whitened zone than the 5 wt% J230-cured nanocomposite, the 5 wt% nano- composite showed a higher toughness. These nanoparticles were found to pose barriers to the vibration of crosslinked matrix molecules, leading to higher glass transition temperatures. While the matrix shear banding caused by nanoparticle expansion and growth is the major toughening mechanism for the J230- cured nanocomposites, the matrix plastic void growth and deformation are most probably the major mechanisms for the DDS-cured system. Under tensile loading, the nanoparticles in the DDS-cured epoxy created fibrils of 100e200 nm in diameter and 3e5 mm in length. TEM analysis in front of a subcritically propagated crack tip showed a number of voids of 30e500 nm in diameter in the vicinity of the crack, implying that rubber nanoparticles expanded, grew and deformed under loading. Unlike conventional epoxy/rubber composites in which all of the rubber particles in the crack front cavitated under loading, only a portion of the nanoparticles in this study expanded to create voids. Huang and Kinloch’s model developed from composites was found not fit well into these nanocomposites

    From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites

    Get PDF
    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy–graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.5

    The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada and its phylogeny

    Get PDF
    The complete mitochondrial genome of Mantis religiosa (Mantodea: Mantidae) from Canada was successfully sequenced. The mitochondrial genome was a circular molecule of 15,521 bp in length, containing 13 protein-coding genes, two rRNA genes, 23 tRNA genes (including an extra tRNAArg gene), and the control region. The AT content of the whole genome was 76.9% and the length of the control region was 636 bp with 81.9% AT content. The structure of the M. religiosa mitochondrial genome from Canada was almost identical to M. religiosa from China and their genetic distance was just 0.017. In Bayesian inference (BI) and maximum likelihood (ML) analyses, we found that M. religiosa was a sister clade to Statilia sp. and the monophyly of the genera Hierodula and Rhombodera was not supported

    A novel liposomal S-propargyl-cysteine: a sustained release of hydrogen sulfide reducing myocardial fibrosis via TGF-β1/Smad pathway

    Get PDF
    Purpose: S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H2S concentrations with known cardioprotective and anti-inflammatory effects. However, its rapid metabolism and excretion have limited its clinical application. To overcome these issues, we have developed some novel liposomal carriers to deliver ZYZ-802 to cells and tissues and have characterized their physicochemical, morphological and pharmacological properties. Methods :Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H2S concentrations. Using an in vivo model of heart failure (HF), the cardio-protective effects of liposomal carrier were determined by echocardiography, histopathology, western blot and the assessment of antioxidant and myocardial fibrosis markers.Results: Both liposomal formulations improved ZYZ-802 pharmacokinetics and optimized H2S concentrations in plasma and tissues. Liposomal ZYZ-802 showed enhanced cardioprotective effects in vivo. Importantly, liposomal ZYZ-802 could inhibit myocardial fibrosis via the inhibition of the TGF-β1/Smad signaling pathway. Conclusion: The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H2S within tissues.Key word: Liposome; S-Propargyl-cysteine (SPRC, ZYZ-802); Hydrogen sulfide; Heart failure; Myocardial fibrosis; TGF-β1/Smad pathwa
    corecore