412 research outputs found

    Phase and amplitude measurement for the SPIRAL2 accelerator

    Get PDF
    International audienceThe SPIRAL2 project is composed of an accelerator and a radioactive beam section. Radioactive ions beams (RIBs) will be accelerated by the current cyclotron CIME and sent at GANIL experimental areas. The accelerator, with a RFQ and a superconducting Linac, will accelerate 5 mA deuterons up to 40MeV and 1 mA heavy ions up to 14.5 MeV/u. A new electronic device has been evaluated at GANIL to measure phase and amplitude of pick-up signals. The principle consists of directly digitizing pulses by under-sampling. Phase and amplitude of different harmonics are then calculated with a FPGA by an I/Q method. Tests and first results of a prototype are shown and presented as well as future evolutions

    Measurement and Control of the Beam Energy for the SPIRAL2 Accelerator

    Get PDF
    WEPF32, http://accelconf.web.cern.ch/AccelConf/ibic2013/International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, will be composed of an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40MeV for the deuteron beams. As part of theMEBT commissioning, the beam energy will be measured on the BTI (Bench of Intermediate Test) at the exit of the RFQ. At the exit of the LINAC, the system has to measure but also control the beam energy. The control consists in ensuring that the beam energy is under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight, the signal is captured by non-intercepting capacitive pick-ups. This paper presents also the results obtained in terms of uncertainties and dynamics of measures

    Irradiation control of the "SPIRAL" target by measuring the ion beam intensity via a fast current transformer

    Get PDF
    International audienceIn order to obtain a more precise control on the irradiation of the targets of the "SPIRAL" installation, a new criterion of safety must be respected. To control this latter, an AQ system has been put in operation and more specifically a new device has been set up in order to measure the ion beam intensity and to calculate the number of particules per second. This value can then be integrated over time. This device consists of two Fast Current Transformers integrated in a mechanical unit placed in a vacuum chamber. These sensors reproduce the image of the pulsed beam at 10MHz and we take from the amplified signal of each sensor, the amplitude of the 2nd harmonic. Each one of these amplitudes is detected by a Lock-in Amplifier, which is acquired via a real time industrial controller. The intensity is calculated by the Fourier series relation between the amplitude of the 2nd harmonic and the average intensity. These equipments can be remotely tested by integrating a test turn on the sensors. They are redundant. The accuracy of measurement is estimated taking into account the variation of beam, of the environment and of the installatio

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Beam Intensity and Energy Control for the SPIRAL2 Facility

    Get PDF
    TUPB029 - ISBN 878-3-95450-122-9International audienceThe first part of the SPIRAL2 facility, which entered last year in the construction phase at GANIL in France, consists of an ion source, a deuteron and a proton source, a RFQ and a superconducting linear accelerator delivering high intensities, up to 5 mA and 40 MeV for the deuteron beams. Diagnostic developments have been done to control both beam intensity and energy by non-interceptive methods at the linac exit. The beam current is measured by using couples of ACCT-DCCT installed along the lines and the beam energy by using a time of flight device. This paper gives explanations about the technical solutions, the results and resolutions for measuring and controlling the beam

    Progress on the Beam Energy Monitor for the SPIRAL2 Accelerator.

    Get PDF
    WEPF29, posterInternational audienceThe first part of the SPIRAL2 project entered last year in the end of the construction phase at GANIL in France. The facility will be composed by an ion source, a deuteron/proton source, a RFQ and a superconducting linear accelerator. The driver is planned to accelerate high intensities, up to 5 mA and 40 MeV for the deuteron beams. A monitoring system was built to measure the beam energy on the BTI line (Bench of Intermediate Test) at the exit of the RFQ. As part of theMEBT commissioning, the beamenergy will be measured on the BTI with an Epics monitoring application. At the exit of the LINAC, another system will have to measure and control the beam energy. The control consists in ensuring that the beam energy stays under a limit by taking account of the measurement uncertainty. The energy is measured by a method of time of flight; the signal is captured by non-intercepting capacitive pick-ups. This paper describes the BTI monitor interface and presents the system evolution following the design review

    Injector Diagnostics Overview of SPIRAL2 Accelerator

    Get PDF
    International audienceThe SPIRAL2 project is based on a multi-beam driver in order to allow both ISOL and low-energy in-flight techniques to produce Radioactive Ion beams (RIB). A superconducting light/heavy-ion linac capable of accelerating 5 mA deuterons up to 40 MeV and 1 mA ions up to 14.5 MeV/u is used to bombard both thick and thin targets. These beams could be used for the production of intense RIB by several reaction mechanisms (fusion, fission, transfer, etc.). The post acceleration of RIB in the SPIRAL2 project is assured by the existing CIME cyclotron. SPIRAL2 beams, both before and after acceleration, can be used in the present experimental area of GANIL. The construction phase of SPIRAL2 is being started since the 1st of July 2005. An injector design overview is presented with diagnostics used to tune and qualify beams

    Intensity Control in GANIL's Experimental Rooms

    Get PDF
    TUPF31International audienceThe safety re-examination of existing GANIL facilities requires the implementation of a safety system which makes a control of the beam intensity sent to the experimental rooms possible. The aim is to demonstrate that beam intensities stay below the authorized limits defined by the safety GANIL group. The challenge is to be able to measure by a non-interceptive method a wide range of beam intensities from 5nA to 5 A with a maximum uncertainty of 5%, independently of the frequency (from 7 to 14.5MHz) and the beam energy (from 1.2 to 95MeV.A). After a comparative study, two types of high frequency diagnostics were selected, the capacitive pick-up and the fast current transformer. This paper presents the signal simulations from diagnostics with different beam energies, the uncertainty calculations and the results of the first tests with beam

    SPIRAL 2 injector diagnostics

    Get PDF
    International audienceThe future SPIRAL2 facility will be composed of a multi-beam driver accelerator (5 mA/40 MeV deuterons, 5 mA /14.5 MeV/u heavy ions) and a dedicated building for the production of radioactive ion beams (RIBs). RIBs will be accelerated by the existing cyclotron CIME for the post acceleration and sent to GANIL's experimental areas. The injector constituted by an ion source a deuteron/proton source a L.E.B.T. and a M.E.B.T. lines and a room temperature R.F.Q. will produces, transports and accelerates beams up to an energy of 0.75 MeV/u. An Intermediate Test Bench (B.T.I.) is being built to commission the SPIRAL2 injector through the first rebuncher of the M.E.B.T. line in a first step and the last rebuncher in a second step. The B.T.I. is designed to perform a wide variety of measurements and functions and to go more deeply in the understanding of the behaviour of diagnostics under high average intensity beam operations. A superconducting LINAC equipped with two types of cavity will allow reaching 20 MeV/u for deuterons beam. This paper describes injector diagnostic developments and gives information about the current status
    corecore