97 research outputs found

    Unveiling Candida albicans intestinal carriage in healthy volunteers: the role of micro- and mycobiota, diet, host genetics and immune response

    Get PDF
    Candida albicans; Colonization resistance; MetagenomicsCandida albicans; Resistència a la colonització; MetagenòmicaCandida albicans; Resistencia a la colonización; MetagenómicaCandida albicans is a commensal yeast present in the gut of most healthy individuals but with highly variable concentrations. However, little is known about the host factors that influence colonization densities. We investigated how microbiota, host lifestyle factors, and genetics could shape C. albicans intestinal carriage in 695 healthy individuals from the Milieu Intérieur cohort. C. albicans intestinal carriage was detected in 82.9% of the subjects using quantitative PCR. Using linear mixed models and multiway-ANOVA, we explored C. albicans intestinal levels with regard to gut microbiota composition and lifestyle factors including diet. By analyzing shotgun metagenomics data and C. albicans qPCR data, we showed that Intestinimonas butyriciproducens was the only gut microbiota species whose relative abundance was negatively correlated with C. albicans concentration. Diet is also linked to C. albicans growth, with eating between meals and a low-sodium diet being associated with higher C. albicans levels. Furthermore, by Genome-Wide Association Study, we identified 26 single nucleotide polymorphisms suggestively associated with C. albicans colonization. In addition, we found that the intestinal levels of C. albicans might influence the host immune response, specifically in response to fungal challenge. We analyzed the transcriptional levels of 546 immune genes and the concentration of 13 cytokines after whole blood stimulation with C. albicans cells and showed positive associations between the extent of C. albicans intestinal levels and NLRP3 expression, as well as secreted IL-2 and CXCL5 concentrations. Taken together, these findings open the way for potential new interventional strategies to curb C. albicans intestinal overgrowth.This work was supported by a grant from Agence Nationale de la Recherche (FunComPath ANR-14-IFEC-0004), the French Government’s Investissement d’Avenir program (Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases [ANR10-LABX-62-IBEID], and [ANR-10-LABX-69-01]), the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie action, Innovative Training Network (FunHoMic; Grant No. 812969), and the European Union’s Horizon 2020 Research and Innovation Program (HDM-FUN, Grant No. 847507). AWW and the Rowett Institute (University of Aberdeen) received core funding support from the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS)

    Unveiling Candida albicans intestinal carriage in healthy volunteers : the role of micro- and mycobiota, diet, host genetics and immune response

    Get PDF
    Acknowledgements This work was supported by a grant from Agence Nationale de la Recherche (FunComPath ANR-14-IFEC-0004), the French Government’s Investissement d’Avenir program (Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases [ANR10-LABX-62-IBEID], and [ANR-10-LABX-69-01]), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie action, Innovative Training Network (FunHoMic; Grant No. 812969 ), and the European Union's Horizon 2020 Research and Innovation Program (HDM-FUN, Grant No. 847507). AWW and the Rowett Institute (University of Aberdeen) received core funding support from the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS).Peer reviewedPublisher PD

    Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis

    Get PDF
    Background and Aims: Cirrhosis is associated with changes in gut microbiome composition. Although acute-on-chronic liver failure (ACLF) is the most severe clinical stage of cirrhosis, there is lack of information about gut microbiome alterations in ACLF using quantitative metagenomics. We investigated the gut microbiome in patients with cirrhosis encompassing the whole spectrum of disease (compensated, acutely decompensated without ACLF, and ACLF). A group of healthy subjects was used as control subjects. Methods: Stool samples were collected prospectively in 182 patients with cirrhosis. DNA library construction and sequencing were performed using the Ion Proton Sequencer (ThermoFisher Scientific, Waltham, MA). Microbial genes were grouped into clusters, denoted as metagenomic species. Results: Cirrhosis was associated with a remarkable reduction in gene and metagenomic species richness compared with healthy subjects. This loss of richness correlated with disease stages and was particularly marked in patients with ACLF and persisted after adjustment for antibiotic therapy. ACLF was associated with a significant increase of Enterococcus and Peptostreptococcus sp and a reduction of some autochthonous bacteria. Gut microbiome alterations correlated with model for end-stage liver disease and Child-Pugh scores and organ failure and was associated with some complications, particularly hepatic encephalopathy and infections. Interestingly, gut microbiome predicted 3-month survival with good stable predictors. Functional analysis showed that patients with cirrhosis had enriched pathways related to ethanol production, γ-aminobutyric acid metabolism, and endotoxin biosynthesis, among others. Conclusions: Cirrhosis is characterized by marked alterations in gut microbiome that parallel disease stages with maximal changes in ACLF. Altered gut microbiome was associated with complications of cirrhosis and survival. Gut microbiome may contribute to disease progression and poor prognosis. These results should be confirmed in future studies

    Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism

    Get PDF
    Objectives Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome\u27s functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. Design We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. Results Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. Conclusion Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity

    Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide

    Get PDF
    The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk

    Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls

    Get PDF
    BACKGROUND: As little is known of association(s) between gut microbiota profiles and host immunological markers, we explored these in children with and without multiple sclerosis (MS). METHODS: Children ≤18 years provided stool and blood. MS cases were within 2-years of onset. Fecal 16S rRNA gene profiles were generated on an Illumina Miseq platform. Peripheral blood mononuclear cells were isolated, and Treg (CD4(+)CD25(hi)CD127(low)FoxP3(+)) frequency and CD4(+) T-cell intracellular cytokine production evaluated by flow cytometry. Associations between microbiota diversity, phylum-level abundances and immune markers were explored using Pearson’s correlation and adjusted linear regression. RESULTS: Twenty-four children (15 relapsing-remitting, nine controls), averaging 12.6 years were included. Seven were on a disease-modifying drug (DMD) at sample collection. Although immune markers (e.g. Th2, Th17, Tregs) did not differ between cases and controls (p > 0.05), divergent gut microbiota associations occurred; richness correlated positively with Th17 for cases (r = +0.665, p = 0.018), not controls (r = −0.644, p = 0.061). Bacteroidetes inversely associated with Th17 for cases (r = −0.719, p = 0.008), not controls (r = +0.320, p = 0.401). Fusobacteria correlated with Tregs for controls (r = +0.829, p = 0.006), not cases (r = −0.069, p = 0.808). CONCLUSIONS: Our observations motivate further exploration to understand disruption of the microbiota-immune balance so early in the MS course. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12883-016-0703-3) contains supplementary material, which is available to authorized users

    Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    Get PDF
    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported(1,2). In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis(3,4). Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa(3,4). These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication

    MetaOMineR : une pacquetage R pour l'analyse de données de métagénomique quantitative

    No full text
    MetaOMineR is a suite of R packages that offer through a large number of functions and modules the capability to analyse large quantitative metagenomics datasets. It is conceived for the analyses of whole NGS data but can be used for 16S datasets as well or other types of omics data. Developed since the beginning of the field the software has evolved and is structured around different modules such as preprocessing, analysis, visualisation, etc. It is used along with other data packages that contain the needed information to describe a given catalogue developed in the same series
    corecore