25 research outputs found
Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf
Surface melt and subsequent firn air depletion can ultimately
lead to disintegration of Antarctic ice shelves1,2 causing
grounded glaciers to accelerate3 and sea level to rise. In
the Antarctic Peninsula, foehn winds enhance melting near
the grounding line4, which in the recent past has led to the
disintegration of the most northerly ice shelves5,6. Here, we
provide observational and model evidence that this process
also occurs over an East Antarctic ice shelf, where meltwaterinduced
firn air depletion is found in the grounding zone.
Unlike the Antarctic Peninsula, where foehn events originate
from episodic interaction of the circumpolar westerlies with
the topography, in coastal East Antarctica high temperatures
are caused by persistent katabatic winds originating from the
ice sheet’s interior. Katabatic winds warm and mix the air
as it flows downward and cause widespread snow erosion,
explaining >3 K higher near-surface temperatures in summer
and surface melt doubling in the grounding zone compared with
its surroundings. Additionally, these winds expose blue ice and
firn with lower surface albedo, further enhancing melt. The
in situ observation of supraglacial flow and englacial storage
of meltwater suggests that ice-shelf grounding zones in East
Antarctica, like their Antarctic Peninsula counterparts, are
vulnerable to hydrofracturing7
Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line
Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers’ size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability
Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet
Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall ~400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet