130 research outputs found

    Cracking Piles of Brittle Grains

    Full text link
    A model which accounts for cracking avalanches in piles of grains subject to external load is introduced and numerically simulated. The stress is stochastically transferred from higher layers to lower ones. Cracked areas exhibit various morphologies, depending on the degree of randomness in the packing and on the ductility of the grains. The external force necessary to continue the cracking process is constant in wide range of values of the fraction of already cracked grains. If the grains are very brittle, the force fluctuations become periodic in early stages of cracking. Distribution of cracking avalanches obeys a power law with exponent τ=2.4±0.1\tau = 2.4 \pm 0.1.Comment: RevTeX, 6 pages, 7 postscript figures, submitted to Phys. Rev.

    Organic electrochemical transistor incorporating an ionogel as solid state electolyte for lactate sensing

    Get PDF
    The bulk of currently available biosensing techniques often require complex liquid handling, and thus suffer from problems associated with leaking and contamination. We demonstrate the use 10 of an Organic Electrochemical Transistor (OECT) for detection of lactate (an essential analyte in physiological measurements of athlete performance) by integration of a RTIL in a gel-format, as a solid-state electrolyte

    An electrochromic ionic liquid: design, characterisation and performance in a solid state platform

    Get PDF
    This work describes the synthesis and characteristics of a novel electrochromic ionic liquid (IL) based on a phosphonium core tethered to a viologen moiety. When integrated into a solid-state electrochromic platform, the viologen modified IL behaved as both the electrolyte and the electrochromic material. Platform fabrication was achieved through in situ photo-polymerisation and encapsulation of this novel IL within a hybrid sol-gel. Important parameters of the platform performance, including its coloration efficiency, switching kinetics and optical properties were characterised using UV/Vis spectroscopy and cyclic voltammetry in tandem. The electrochromic platform exhibits a coloration efficiency of 10.72 cm2C-1, and a varied optical output as a function of the incident current. Despite the rather viscous nature of the material, the platform exhibited approximately two orders of magnitude faster switching kinetics (221 seconds to reach 95 % absorbance) when compared to previously reported electrochromic ILs (18,000 seconds)
    corecore