37 research outputs found

    BrtB is an O-alkylating enzyme that generates fatty acid-bartoloside esters

    Get PDF
    Esterification reactions are central to many aspects of industrial and biological chemistry. The formation of carboxyesters typically occurs through nucleophilic attack of an alcohol onto the carboxylate carbon. Under certain conditions employed in organic synthesis, the carboxylate nucleophile can be alkylated to generate esters from alkyl halides, but this reaction has only been observed transiently in enzymatic chemistry. Here, we report a carboxylate alkylating enzyme – BrtB – that catalyzes O-C bond formation between free fatty acids of varying chain length and the secondary alkyl halide moieties found in the bartolosides. Guided by this reactivity, we uncovered a variety of natural fatty acid-bartoloside esters, previously unrecognized products of the bartoloside biosynthetic gene cluster. © 2020, The Author(s).We acknowledge funding by the European Research Council, through a Starting Grant (Grant Agreement 759840) to P.N.L., and by Fundação para a Ciência e Tecnologia (FCT) through project PTDC/BIA-BQM/29710/2017 and grant IF/01358/2014 to P.N.L. The work was also partially supported by Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 by FCT and the European Regional Development Fund, as part of the program PT2020. We thank Emily Balskus (Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA) for helpful discussions and Ralph Urbatzka (CIIMAR, University of Porto, Porto, Portugal) for help with cytotoxicity assays

    Distinct Temporal Succession of Bacterial Communities in Early Marine Biofilms in a Portuguese Atlantic Port

    Get PDF
    Marine biofilms are known to influence the corrosion of metal surfaces in the marine environment. Despite some recent research, the succession of bacterial communities colonizing artificial surfaces remains uncharacterized in some temporal settings. More specifically, it is not fully known if bacterial colonizers of artificial surfaces are similar or distinct in the different seasons of the year. In particular the study of early biofilms, in which the bacterial cells communities first adhere to artificial surfaces, are crucial for the development of the subsequent biofilm communities. In this work, we used amplicon-based NGS (next-generation sequencing) and universal 16S rRNA bacterial primers to characterize the early biofilm bacterial communities growing on 316 L stainless steel surfaces in a Northern Portugal port. Sampling spanned 30-day periods in two distinct seasons (spring and winter). Biofilm communities growing in steel surfaces covered with an anti-corrosion paint and planktonic communities from the same location were also characterized. Our results demonstrated that distinct temporal patterns were observed in the sampled seasons. Specifically, a significantly higher abundance of Gammaproteobacteria and Mollicutes was found on the first days of biofilm growth in spring (day 1 to day 4) and a higher abundance of Alphaproteobacteria during the same days of biofilm growth in winter. In the last sampled day (day 30), the spring biofilms significantly shifted toward a dominance of photoautotrophic groups (mostly diatoms) and were also colonized by some macrofouling communities, something not observed during the winter sampling. Our results revealed that bacterial composition in the biofilms was particularly affected by the sampled day of the specific season, more so than the overall effect of the season or overall sampling day of both seasons. Additionally, the application of a non-fouling-release anti-corrosion paint in the steel plates resulted in a significantly lower diversity compared with plates without paint, but this was only observed during spring. We suggest that temporal succession of marine biofilm communities should be taken in consideration for future antifouling/anti-biofilm applications.JTA was supported by the FCT grant SFRH/BD/99003/2013. This research was also supported by the projects NOVELMAR – Novel marine products with biotechnological applications (INNOVMAR NORTE-01-0145-FEDER-000035) and UID/Multi/04423/2019, as well as through grant IF/01358/2014 to PL, through national funds provided by the Portuguese Foundation for Science and Technology (FCT) and the European Regional Development Fund (ERDF), in the framework of the programme PT2020 and funding was provided by the project NASCEM PTDC/BTA-BTA/31422/2017 (POCI-01-0145-FEDER-031422), financed by the FCT, COMPETE2020 and PORTUGAL2020

    Diversity of bacterial biosynthetic genes in maritime antarctica

    Get PDF
    Bacterial natural products (NPs) are still a major source of new drug leads. Polyketides (PKs) and non-ribosomal peptides (NRP) are two pharmaceutically important families of NPs and recent studies have revealed Antarctica to harbor endemic polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, likely to be involved in the production of novel metabolites. Despite this, the diversity of secondary metabolites genes in Antarctica is still poorly explored. In this study, a computational bioprospection approach was employed to study the diversity and identity of PKS and NRPS genes to one of the most biodiverse areas in maritime Antarctica—Maxwell Bay. Amplicon sequencing of soil samples targeting ketosynthase (KS) and adenylation (AD) domains of PKS and NRPS genes, respectively, revealed abundant and unexplored chemical diversity in this peninsula. About 20% of AD domain sequences were only distantly related to characterized biosynthetic genes. Several PKS and NRPS genes were found to be closely associated to recently described metabolites including those from uncultured and candidate phyla. The combination of new approaches in computational biology and new culture-dependent and -independent strategies is thus critical for the recovery of the potential novel chemistry encoded in Antarctica microorganisms.Fundação para a Ciência e a Tecnologia (FCT) funded this study through the grant PTDC/CTA- AMB/30997/2017 to CM, the IF research contract IF/01358/2014 to PNL, a PhD scholarship to AR (SFRH/BD/140567/2018) and within the scope of UIDB/04423/2020 and UIDP/04423/2020. The authors acknowledge the Portuguese Polar Program (PROPOLAR) and the Chilean Antarctic Institute (INACH) for providing logistics and traveling financial support during CONTANTARC-3 campaign in Maxwell Bay/King George Island

    Draft genome sequence of the N2-fixing cyanobacterium Nostoc piscinale CENA21, isolated from the Brazilian Amazon floodplain

    Get PDF
    We announce here the draft genome sequence of Nostoc piscinale CENA21, a diazotrophic heterocyst-forming cyanobacterium isolated from the Solimões River, Amazon Basin, Brazil. It consists of one circular chromosome scaffold with 11 contigs and total size of 7,094,556 bp. Secondary metabolite annotations indicate a good source for the discovery of novel natural products. © 2016 Leão et al.This work has been supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and from the Funda ção de Amparo à Pesquisa do Estado do Pará (BIONORTE-CNPq/FAPESPA) to M.P.C.S. This work, including the efforts of Marli Fatima Fiore and Maria Paula Cruz Schneider, was funded by MCTI | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (307045/2010-2 and 306607/2012-3). This work, including the efforts of Tiago Leão and Pedro Ivo Guimaraes, was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (13425-13-7 and 13194-13-5). This work, including the efforts of Pedro Nuno Leão, was funded by Ministry of Education and Science | Fundação para a Ciência e a Tecnologia (FCT) (IF/01358/2014)

    Diversity and bioactive potential of actinobacteria isolated from a coastal marine sediment in Northern Portugal

    Get PDF
    Natural compounds have had increasing applications in the biotechnological sector, with a large fraction of these substances being channeled to the pharmaceutical industry due to their important pharmacological properties. The discovery of new bioactive molecules with novel mechanisms of action constitutes a promising solution for the design of alternative therapeutic solutions. Actinobacteria are a large group of morphologically and physiologically diverse bacteria well known for their production of biotechnologically relevant compounds. The Portuguese coast is scantly explored in terms of Actinobacteria diversity and respective bioactive potential, offering a good opportunity to find new Actinobacteria taxa and bioactive natural products. In this study, we investigated the Actinobacteria diversity associated with a sediment sample collected from the intertidal zone of a beach in northern Portugal, through a cultivation-dependent approach, and screened its antimicrobial and cytotoxic potential. A total of 52 Actinobacteria strains were recovered from the marine sediment, with the largest fraction of the isolates belonging to the genus Micromonospora. Bioactivity screening assays identified crude extracts of six Streptomyces strains active against C. albicans, exhibiting minimum inhibition concentration (MIC) values in the range of 3.90–125 μg mL−1. Twenty-five Actinobacteria crude extracts (obtained from strains of the genera Micromonospora, Streptomyces and Actinomadura) exhibited significant effects on the viability of at least one tested cancer cell line (breast ductal carcinoma T-47D and liver hepatocellular carcinoma HepG2). The Actinobacteria extracts demonstrating activity in the antimicrobial and/or cytotoxic assays were subjected to metabolomic analysis (Mass spectrometry (MS)-based dereplication and molecular networking analyses), indicating the presence of four clusters that may represent new natural products. The results obtained demonstrate the importance of bioprospecting underexplored environments, like the Portuguese coast, for enhancing the discovery of new natural products, and call attention to the relevance of preserving the natural genetic diversity of coastal environments.This work was funded by the structured program of R&D&I ATLANTIDA - Platform for the monitoring of the North Atlantic Ocean and tools for the sustainable exploitation of the marine resources (reference NORTE-01-0145-FEDER-000040), supported by the North Portugal Regional Operational Programme (NORTE2020), through the European Regional Development Fund (ERDF). It was also supported by the strategic funding UIDB/04423/2020 and UIDP/04423/2020 through national funds provided by FCT

    Cyanobacterial allelochemicals but not cyanobacterial cells markedly reduce microbial community diversity

    Get PDF
    The freshwater cyanobacterium Phormidium sp. LEGE 05292 produces allelochemicals, including the cyclic depsipeptides portoamides, that influence the growth of heterotrophic bacteria, cyanobacteria, and eukaryotic algae. Using 16S rRNA gene amplicon metagenomics, we show here that, under laboratory conditions, the mixture of metabolites exuded by Phormidium sp. LEGE 05292 markedly reduces the diversity of a natural planktonic microbial community. Exposure of the same community to the portoamides alone resulted in a similar outcome. In both cases, after 16 days, alpha-diversity estimates for the allelochemical-exposed communities were less than half of those for the control communities. Photosynthetic organisms, but also different heterotrophic-bacteria taxa were found to be negatively impacted by the allelochemicals. Intriguingly, when Phormidium sp. LEGE 05292 was co-cultured with the microbial community, the latter remained stable and closer to non-exposed than to allelochemical-exposed communities. Overall, our observations indicate that although under optimal growth conditions Phormidium sp. LEGE 05292 is able to synthesize potent allelochemicals that severely impact different microorganisms, its allelopathic effect is not pronounced when in contact with a complex microbial community. Therefore, under ecologically relevant conditions, the allelopathic behavior of this cyanobacterium may be regulated by nutrient availability or by interactions with the surrounding microbiota. Copyright © 2017 Dias, Antunes, Ribeiro, Azevedo, Vasconcelos and Leão.Funding We acknowledge support from Fundação para a Ciência e a Tecnologia (FCT) through grant IF/01358/2014 to PL and through the project UID/Multi/04423/2013. This work was also supported by the Structured Program of R&D&I INNOVMAR (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF)

    Hierridin B Isolated from a Marine Cyanobacterium Alters VDAC1, Mitochondrial Activity, and Cell Cycle Genes on HT-29 Colon Adenocarcinoma Cells

    Get PDF
    Background: Hierridin B was isolated from a marine cyanobacterium Cyanobium sp. strain and induced cytotoxicity selectively in HT-29 adenocarcinoma cells. The underlying molecular mechanism was not yet elucidated. Methods: HT-29 cells were exposed to the IC50concentration of hierridin B (100.2 μM) for 48 h. Non-targeted proteomics was performed using 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The mRNA expression of apoptotic and cell cycle genes were analyzed by real-time PCR. Automated quantification of 160 cytoplasm and mitochondrial parameter was done by fluorescence microscopy using CellProfiler software. Results: Proteomics identified 21 significant different proteins, which belonged to protein folding/synthesis and cell structure amongst others. Increase of VDAC1 protein responsible for formation of mitochondrial channels was confirmed by mRNA expression. A 10-fold decrease of cytoskeleton proteins (STMN1, TBCA) provided a link to alterations of the cell cycle. CCNB1 and CCNE mRNA were decreased two-fold, and P21CIP increased 10-fold, indicative of cell cycle arrest. Morphological analysis of mitochondrial parameter confirmed a reduced mitochondrial activity. Conclusion: Hierridin B is a potential anticancer compound that targets mitochondrial activity and function.This research was partially supported by FCT—Foundation for Science and Technology under the project UID/Multi/04423/2013 and by the Structured Program of R & D & I INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF). Ralph Urbatzka was supported by the FCT scholarship SFRH/BPD/112287/2015, and Pedro N. Leão by FCT grant IF/01358/2014

    Bartolosides E-K from a Marine coccoid cyanobacterium

    Get PDF
    The glycosylated and halogenated dialkylresorcinol (DAR) compounds bartolosides A-D (1-4) were recently discovered from marine cyanobacteria and represent a novel family of glycolipids, encoded by the brt biosynthetic gene cluster. Here, we report the isolation and NMR- and MS-based structure elucidation of monoglycosylated bartolosides E-K (5-11), obtained from Synechocystis salina LEGE 06099, a strain closely related to the cyanobacterium that produces the diglycosylated 2-4. In addition, a genome region containing orthologues of brt genes was identified in this cyanobacterium. Interestingly, the major bartoloside in S. salina LEGE 06099 was 1 (above 0.5% dry wt), originally isolated from the phylogenetically distant filamentous cyanobacterium Nodosilinea sp. LEGE 06102. Compounds 5-11 are analogues of 1, with different alkyl chain lengths or halogenation patterns. Their structures and the organization of the brt genes suggest that the DAR-forming ketosynthase BrtD can generate structural diversity by accepting fatty acyl-derived substrates of varying length. Compound 9 features a rare midchain gem-dichloro moiety, indicating that the putative halogenase BrtJ is able to act twice on the same midchain carbon. © 2016 The American Chemical Society and American Society of Pharmacognosy.We would like to thank CEMUP for NMR and HRMS analyses, I. Dias, A. Kijoa, and S. Buttachon for optical rotation measurements, and B. Jarrais for IR measurements. This work was supported by Fundação para a Ciência e a Tecnologia (FCT) through grants PTDC/MAR-BIO/2818/2012 and IF/01358/2014 to P.N.L. and partially by project NOVELMAR (NORTE-01-0145-FEDER-000035) supported by the NORTE2020 Program and the European Regional Development Fund

    Cyanobacterial diversity in microbial mats from the hypersaline lagoon system of Araruama, Brazil: An in-depth polyphasic study

    Get PDF
    Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity. © 2017 Ramos, Castelo-Branco, Leão, Martins, Carvalhal-Gomes, Sobrinho da Silva, Mendonça Filho and Vasconcelos.This work was supported by the Biogeochemical Project (AMPETRO 14777—Cooperation term 0050.0023165.06.4) of the GSE (Sedimentology Management) Network of PETROBRAS, by the Brazilian National Research Agency— CNPq and by the Research Agency of Rio de Janeiro State—FAPERJ. It was also funded by Portuguese National Funds through FCT—Fundação para a Ciência e a Tecnologia, grants SFRH/BD/80153/2011 to VR, IF/01358/2014 to PL, and UID/Multi/04423/2013 and by the Structured Program of R&D&I INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF)

    Cytotoxicity of portoamides in human cancer cells and analysis of the molecular mechanisms of action

    Get PDF
    Portoamides are cyclic peptides produced and released by the cyanobacterial strain Phormidium sp. presumably to interfere with other organisms in their ecosystems ("allelopathy"). Portoamides were previously demonstrated to have an antiproliferative effect on human lung carcinoma cells, but the underlying mechanism of this activity has not been described. In the present work, the effects of portoamides on proliferation were examined in eight human cancer cell lines and two non-carcinogenic cell lines, and major differences in sensitivities were observed. To generate hypotheses with regard to molecular mechanisms of action, quantitative proteomics using 2D gel electrophoresis and MALDI-TOF/TOF were performed on the colon carcinoma cell line HT-29. The expression of proteins involved in energy metabolism (mitochondrial respiratory chain and pentose phosphate pathway) was found to be affected. The hypothesis of altered energy metabolism was tested in further experiments. Exposure to portoamides resulted in reduced cellular ATP content, likely due to decreased mitochondrial energy production. Mitochondrial hyperpolarization and reduced mitochondrial reductive capacity was observed in treated cells. Furthermore, alterations in the expression of peroxiredoxins (PRDX4, PRDX6) and components of proteasome subunits (PSB4, PSA6) were observed in portoamide-treated cells, but these alterations were not associated with detectable increases in oxidative stress. We conclude that the cytotoxic activity of portoamides is associated with disturbance of energy metabolism, and alterations in mitochondrial structure and function. © 2017 Ribeiro et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This research was supported by the Structured Program of R&D&I INNOVMAR—Innovation and Sustainability in the Management and Exploitation of Marine Resources (reference NORTE-01-0145-FEDER-000035, Research Line NOVELMAR), funded by the Northern Regional Operational Program (NORTE2020) through the European Regional Development Fund (ERDF). The project was additionally supported by national funds (FCT, Foundation for Science and Technology) with the reference UID/Multi/04423/2013, UID/BIM/04501/2013, UID/IC/00051/2013 and RNEM (National Mass Spectrometry Network). PNL was supported by grant IF/01358/2014 (FCT), and Ralph Urbatzka by grant SFRH/BPD/112287/2015 (FCT). We thank Dr. Jonathan Mark Wilson (Wilfrid Laurier University, Waterloo, Canada) for the correction of the English in the manuscript
    corecore