7,290 research outputs found

    Gender and vulnerable employment in the developing world: Evidence from global microdata

    Get PDF
    This paper investigates gender inequality in vulnerable employment: forms of employment typically featuring high precariousness, inadequate earnings, and lack of decent working conditions. Using a large collection of harmonized household surveys from developing countries, we measure long-term trends, describe geographical patterns, and estimate correlates of gender inequalities in vulnerable employment. Conditional on individual and household characteristics, women are 7 percentage points more likely to be in vulnerable employment than men. The experiences of marriage and parenthood are important drivers of this gender gap. Across countries, the gender gap is smaller in richer countries, with lower fertility rates, and more gender-egalitarian laws, particularly those laws regulating marriage, parenthood, access to assets, and access to entrepreneurship. Since the 1990s, rising levels of female education and rapidly falling fertility have pulled women away from vulnerable employment at a faster rate than men. However, that process is largely exhausted, with current levels of the gender gap in vulnerable employment being almost entirely unexplained by standard labour supply factors

    Quantum Chemistry–Machine Learning Approach for Predicting Properties of Lewis Acid–Lewis Base Adducts

    Get PDF
    Synthetic design allowing predictive control of charge transfer and other optoelectronic properties of Lewis acid adducts remains elusive. This challenge must be addressed through complementary methods combining experimental with computational insights from first principles. Ab initio calculations for optoelectronic properties can be computationally expensive and less straightforward than those sufficient for simple ground-state properties, especially for adducts of large conjugated molecules and Lewis acids. In this contribution, we show that machine learning (ML) can accurately predict density functional theory (DFT)-calculated charge transfer and even properties associated with excited states of adducts from readily obtained molecular descriptors. Seven ML models, built from a dataset of over 1000 adducts, show exceptional performance in predicting charge transfer and other optoelectronic properties with a Pearson correlation coefficient of up to 0.99. More importantly, the influence of each molecular descriptor on predicted properties can be quantitatively evaluated from ML models. This contributes to the optimization of a priori design of Lewis adducts for future applications, especially in organic electronics

    The Baum-Connes Conjecture via Localisation of Categories

    Get PDF
    We redefine the Baum-Connes assembly map using simplicial approximation in the equivariant Kasparov category. This new interpretation is ideal for studying functorial properties and gives analogues of the assembly maps for all equivariant homology theories, not just for the K-theory of the crossed product. We extend many of the known techniques for proving the Baum-Connes conjecture to this more general setting

    Coherent multi-flavour spin dynamics in a fermionic quantum gas

    Full text link
    Microscopic spin interaction processes are fundamental for global static and dynamical magnetic properties of many-body systems. Quantum gases as pure and well isolated systems offer intriguing possibilities to study basic magnetic processes including non-equilibrium dynamics. Here, we report on the realization of a well-controlled fermionic spinor gas in an optical lattice with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived intrinsic spin oscillations and investigate the transition from two-body to many-body dynamics. The latter results in a spin-interaction driven melting of a band insulator. Via an external magnetic field we control the system's dimensionality and tune the spin oscillations in and out of resonance. Our results open new routes to study quantum magnetism of fermionic particles beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure

    Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space Plasma Turbulence

    Get PDF
    The energy of turbulence in the universe, which cascades from large fluid scales to small kinetic scales, is believed to be dissipated through conversion to thermal or nonthermal kinetic energy. However, identifying the dissipation processes and measuring the dissipation rate in turbulence remain challenging. Based on unprecedented high-quality measurements of space plasma turbulence by the Magnetospheric Multiscale mission, we propose a novel approach to measure the scale-dependent spectrum of the energy conversion rate between the fluctuating electromagnetic energy and plasma kinetic energy. The energy conversion rate spectrum is found to show a positive bulge around the ion kinetic scale, which clearly indicates the dissipation of the turbulent energy. The energy dissipation rate around the ion scale is estimated to be 0.5 × 106 J kg−1 s−1. This work provides basic information on local dissipation in magnetosheath turbulence and sets up a new paradigm for studying the dissipation of universal plasma turbulence

    Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1

    Get PDF
    Aberrant transforming growth factor–β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cellconditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β–induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment

    Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure

    Get PDF
    AbstractMK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to ‘pre-block’ a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg2+ is also present. In the presence of Mg2+, 50% recovery from MK-801 blockade is achieved after 10′ of 100 μM NMDA, or 30′ of 15 μM NMDA exposure. In Mg2+-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg2+ in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg2+ or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg2+ for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 ‘pre-block’ protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation.This article is part of the Special Issue entitled ‘Glutamate Receptor-Dependent Synaptic Plasticity’
    • …
    corecore