101,748 research outputs found
Conformational Control of Exciton-Polariton Physics in Metal - Poly(9,9-dioctylfluorene) - Metal Cavities
Control is exerted over the exciton-polariton physics in metal -
Poly(9,9-dioctyl fluorene) - metal microcavities via conformational changes to
the polymer backbone. Using thin-film samples containing increasing fractions
of -phase chain segments, a systematic study is reported for the mode
characteristics and resulting light emission properties of cavities containing
two distinct exciton sub-populations within the same semiconductor. Ultrastrong
coupling for disordered glassy-phase excitons is observed from angle-resolved
reflectivity measurements, with Rabi splitting energies in excess of 1.05 eV
(more than 30% of the exciton transition energy) for both TE- and TM-polarized
light. A splitting of the lower polariton branch is then induced via
introduction of -phase excitons and increases with their growing
fraction. In all cases, the photoluminescence emanates from the lowermost
polariton branch, allowing conformational control to be exerted over the
emission energy and its angular variation. Dispersion-free cavities with highly
saturated blue-violet emission are thus enabled. Experimental results are
discussed in terms of the full Hopfield Hamiltonian generalized to the case of
two exciton oscillators. The importance of taking account of the molecular
characteristics of the semiconductor for an accurate description of its strong
coupling behaviour is directly considered, in specific relation to the role of
the vibronic structure
Retrieval of interatomic separations of molecules from laser-induced high-order harmonic spectra
We illustrate an iterative method for retrieving the internuclear separations
of N, O and CO molecules using the high-order harmonics generated
from these molecules by intense infrared laser pulses. We show that accurate
results can be retrieved with a small set of harmonics and with one or few
alignment angles of the molecules. For linear molecules the internuclear
separations can also be retrieved from harmonics generated using isotropically
distributed molecules. By extracting the transition dipole moment from the
high-order harmonic spectra, we further demonstrated that it is preferable to
retrieve the interatomic separation iteratively by fitting the extracted dipole
moment. Our results show that time-resolved chemical imaging of molecules using
infrared laser pulses with femtosecond temporal resolutions is possible.Comment: 14 pages, 9 figure
Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation
We report theoretical investigations of the tomographic procedure suggested
by Itatani {\it et al.} [Nature, {\bf 432} 867 (2004)] for reconstructing
highest occupied molecular orbitals (HOMO) using high-order harmonic generation
(HHG). Using the limited range of harmonics from the plateau region, we found
that under the most favorable assumptions, it is still very difficult to obtain
accurate HOMO wavefunction, but the symmetry of the HOMO and the internuclear
separation between the atoms can be accurately extracted, especially when
lasers of longer wavelengths are used to generate the HHG. We also considered
the possible removal or relaxation of the approximations used in the
tomographic method in actual applications. We suggest that for chemical
imaging, in the future it is better to use an iterative method to locate the
positions of atoms in the molecule such that the resulting HHG best fits the
macroscopic HHG data, rather than by the tomographic method.Comment: 13 pages, 14 figure
A mathematical formalization of the parallel replica dynamics
The purpose of this article is to lay the mathematical foundations of a well
known numerical approach in computational statistical physics and molecular
dynamics, namely the parallel replica dynamics introduced by A.F. Voter. The
aim of the approach is to efficiently generate a coarse-grained evolution (in
terms of state-to-state dynamics) of a given stochastic process. The approach
formally consists in concurrently considering several realizations of the
stochastic process, and tracking among the realizations that which, the
soonest, undergoes an important transition. Using specific properties of the
dynamics generated, a computational speed-up is obtained. In the best cases,
this speed-up approaches the number of realizations considered. By drawing
connections with the theory of Markov processes and, in particular, exploiting
the notion of quasi-stationary distribution, we provide a mathematical setting
appropriate for assessing theoretically the performance of the approach, and
possibly improving it
Effects of burying and removing dead leaves from the ground on the development of scab epidemics in an apple organic orchard.
Ascospores produced on scabbed leaves in the leaf litter constitute the primary
inoculum causing scab infections in apple orchards during the year. The trial, carried
out in a commercial organic orchard, permitted to evaluate the effects of the
removal of dead leaves located on the inter-row supplemented by the ploughing in of
the leaves left on the row, on the development of scab epidemics. From the first
recorded contamination to harvest time, lesions on leaves and fruits were counted to
determine reduction in disease incidence and severity, compared with the untreated
plots. Disease severity as a function of the distance from the untreated plot was also
observed, to evaluate the spore dispersal gradient within the orchard. The results
show that the ploughing in and the removal of the litter reduced disease incidence by
62% on leaves, and by almost 82% on fruits to harvest. Moreover, measurements of
the dispersal gradient show that the spores do not disperse, or little, beyond 20m of
the untreated zone
- …