We illustrate an iterative method for retrieving the internuclear separations
of N2, O2 and CO2 molecules using the high-order harmonics generated
from these molecules by intense infrared laser pulses. We show that accurate
results can be retrieved with a small set of harmonics and with one or few
alignment angles of the molecules. For linear molecules the internuclear
separations can also be retrieved from harmonics generated using isotropically
distributed molecules. By extracting the transition dipole moment from the
high-order harmonic spectra, we further demonstrated that it is preferable to
retrieve the interatomic separation iteratively by fitting the extracted dipole
moment. Our results show that time-resolved chemical imaging of molecules using
infrared laser pulses with femtosecond temporal resolutions is possible.Comment: 14 pages, 9 figure