1,679 research outputs found
Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands
We calculate the double resonant (DR) Raman spectrum of graphene, and
determine the lines associated to both phonon-defect processes, and two-phonons
ones. Phonon and electronic dispersions reproduce calculations based on density
functional theory corrected with GW. Electron-light, -phonon, and -defect
scattering matrix elements and the electronic linewidth are explicitly
calculated. Defect-induced processes are simulated by considering different
kind of idealized defects. For an excitation energy of eV, the
agreement with measurements is very good and calculations reproduce: the
relative intensities among phonon-defect or among two-phonon lines; the
measured small widths of the D, , 2D and lines; the line shapes; the
presence of small intensity lines in the 1800, 2000 cm range. We
determine how the spectra depend on the excitation energy, on the light
polarization, on the electronic linewidth, on the kind of defects and on their
concentration. According to the present findings, the intensity ratio between
the and 2D lines can be used to determine experimentally the electronic
linewidth. The intensity ratio between the and lines depends on the
kind of model defect, suggesting that this ratio could possibly be used to
identify the kind of defects present in actual samples. Charged impurities
outside the graphene plane provide an almost undetectable contribution to the
Raman signal
Electron Transport and Hot Phonons in Carbon Nanotubes
We demonstrate the key role of phonon occupation in limiting the high-field
ballistic transport in metallic carbon nanotubes. In particular, we provide a
simple analytic formula for the electron transport scattering length, that we
validate by accurate first principles calculations on (6,6) and (11,11)
nanotubes. The comparison of our results with the scattering lengths fitted
from experimental I-V curves indicates the presence of a non-equilibrium
optical phonon heating induced by electron transport. We predict an effective
temperature for optical phonons of thousands Kelvin.Comment: 4 pages, 1 figur
Kohn Anomalies and Electron-Phonon Interaction in Graphite
We demonstrate that graphite phonon dispersions have two Kohn anomalies at
the Gamma-E_2g and K-A'1 modes. The anomalies are revealed by two sharp kinks.
By an exact analytic derivation, we show that the slope of these kinks is
proportional to the square of the electron-phonon coupling (EPC). Thus, we can
directly measure the EPC from the experimental dispersions. The Gamma-E_2g and
K-A'1 EPCs are particularly large, whilst they are negligible for all the other
modes at Gamma and K.Comment: 4 pages, 2 figure
An agronomic evaluation of new safflower (Carthamus tinctorius L.) germplasm for seed and oil yields under Mediterraean climate conditions
Interest in oilseed crops for agro-industrial research and development projects has increased in the Mediterranean area, in recent years. Saffloower (Carthamus tinctorius L.) is of potential interest for agriculture mainly due to fatty acid content variability in the seed oil. The aim of this study was to assess the agronomic performance of 16 new safflower accessions together with safflower variety Montola 2000, used as a reference, in a semi-arid environment. Research was carried out in Sicily (Italy) from 2013–2014. Hierarchical cluster analysis carried out on the fatty acid composition of safflower accessions resulted in their division into four main groups. Linoleic, oleic and palmitic acids were the main fatty acids present in the accessions. Seed yield was 1.11 t ha-1 on average and seed oil content was found to be approximately 35.01% of dry matter on average. Positive and significant relationships between seed/oil yield and other tested traits were found. The carbon, hydrogen and nitrogen content as a percentage of dry matter varied greatly both for the above- and belowground
plant parts on average. This study confirms the interest of safflower for both food and non-food applications, offering interesting prospects in semi-arid regions
CPAP after endoscopic procedures as add-on therapy for the treatment of tracheal stenosis: a case series
Tracheal stenosis represents a possible complication in intubated or tracheotomised patients. Tracheal resection is currently the gold standard for the treatment of complex stenosis while granulomas and simple stenosis (e.g., web-like) are often treated by endoscopic procedures, which do not consistently give satisfactory long-term results, due to frequent relapses. Administering continuous positive airway pressure (CPAP) after endoscopic procedures might represent a new add-on option for the treatment of this complication. In this case series are presented two patients with tracheal stenosis showed after the removal of tracheostomy tube, both treated with CPAP. The results were straightforward: CPAP treatment helped to keep stable the tracheal lumen, without adverse effects. No further endoscopic dilations were necessary thereafter, with a likely positive impact on patients' quality of life and on health expenditure
The Raman Fingerprint of Graphene
Graphene is the two-dimensional (2d) building block for carbon allotropes of
every other dimensionality. It can be stacked into 3d graphite, rolled into 1d
nanotubes, or wrapped into 0d fullerenes. Its recent discovery in free state
has finally provided the possibility to study experimentally its electronic and
phonon properties. Here we show that graphene's electronic structure is
uniquely captured in its Raman spectrum that clearly evolves with increasing
number of layers. Raman fingerprints for single-, bi- and few-layer graphene
reflect changes in the electronic structure and electron-phonon interactions
and allow unambiguous, high-throughput, non-destructive identification of
graphene layers, which is critically lacking in this emerging research area
Phonon Linewidths and Electron Phonon Coupling in Nanotubes
We prove that Electron-phonon coupling (EPC) is the major source of
broadening for the Raman G and G- peaks in graphite and metallic nanotubes.
This allows us to directly measure the optical-phonon EPCs from the G and G-
linewidths. The experimental EPCs compare extremely well with those from
density functional theory. We show that the EPC explains the difference in the
Raman spectra of metallic and semiconducting nanotubes and their dependence on
tube diameter. We dismiss the common assignment of the G- peak in metallic
nanotubes to a Fano resonance between phonons and plasmons. We assign the G+
and G- peaks to TO (tangential) and LO (axial) modes.Comment: 5 pages, 4 figures (correction in label of fig 3
A study on the dependence of structure of multi-walled carbon nanotubes on acid treatment
In the current research, the role of both concentrated nitric acid and ultrasound waves on oxidation of multi-walled carbon nanotubes (MWNTs) was studied. The functionalized MWCNTs were characterized by transmission electron microscopy (TEM), thermogravimetric analyzer, and Fourier transform infrared spectroscopy (FTIR) techniques. It was found that desirable modifications to MWNTs occurred after acid treatment. Carboxylic acid groups were appeared on the side surfaces of MWNTs. FTIR presented the formation of oxygen-containing groups such as C=O and COOH after modification by concentrated nitric acid. The TEM images showed that the aspect ratio of opened MWCNTs was controlled by both ultrasonic waves and acid treatment time. It was also found that the exposure of about 4 h in nitric acid led to the highest removal of the impurities with the least destructive effect
Multitemporal mapping of post-fire land cover using multiplatform PRISMA hyperspectral and Sentinel-UAV multispectral data: Insights from case studies in Portugal and Italy
Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth
- …