4,060 research outputs found
A dynamical and observational study of an unstable TNO: 59358 (1999CL158)
Context: The physical surface properties of a trans-Neptunian Object is believed to be mainly produced as a result of interplay between irradiation from different kinds of cosmic rays and collisions. Objects recently resurfaced by collisions are likely to have very different physical properties from those of the bulk population. In particular, pristine ices from the interior are expected to be present on the surface. A possible way to identify a trans-Neptunian object that has suffered a major collision is by investigating the lifetime of the orbit near its present location. If the lifetime is very short, a physical encounter is a possible way by which the TNO has evolved into such a short lived orbit. Aims: The goal of this investigation is to search for tracers of a young surface on objects with very short orbital lifetimes in the trans-Neptunian Belt. We are looking for any evidence that indicates that they reached their current unstable orbits through collisions. In particular, we have studied the case of 59358 (1999CL{158}), a trans-Neptunian object that currently has the most chaotic orbit in the Classical Belt. Methods: By numerically integration its orbit, we estimate that 59358 (1999CL{158}) has resided near its location for about 10 Myr. We have also obtained a near-infrared spectrum of 59358 (1999CL{158}) in the region between 1.43-1.96 microns using the near infrared imager and spectrograph, NIRI, at Gemini North 8-m telescope. These NIR observations are of the faintest and smallest TNO so far observed. Results: We present the results of the search of ice-bands, such as CH4 and H2O, having found evidence of the presence of the first mentioned molecule. Conclusions: The detection of methane implies that it must be an abundant component of this object. Methane is also evidence of a young surface, therefore we conclude that it is likely that 59358 (1999CL{158}) has experienced a recent collision or collisions.
Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).Fil: Alvarez Candal, A.. MinistĂ©rio de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Jones, D.. University Of London; Reino UnidoFil: Lazzaro, D.. MinistĂ©rio de Ciencia, Tecnologia e Innovacao. Observatorio Nacional; BrasilFil: Williams, I. P.. University Of London; Reino UnidoFil: Melita, Mario Daniel. Consejo Nacional de InvestigaciĂłnes CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂa y FĂsica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂa y FĂsica del Espacio; Argentin
Clinical and neurophysiological abnormalities before and after reconstruction of the anterior cruciate ligament of the knee
Objectives - We aimed to study knee proprioception and somatosensory evoked potentials (SEPs) to stimulation of the common peroneal nerve (CPN) in 7 patients with lesion of the anterior cruciate ligament (ACL) before and after ACL reconstruction. Materials and methods - We recorded the spinal N14 and scalp P27 potentials in 5 patients, while in the remaining 2 patients we calculated scalp SEP maps by 20 electrodes. The knee proprioception was tested by comparing the sensitivity to movement of both the knees. Results - Before surgery, all patients showed decreased knee position sense and lack of the cortical P27 potential on the side of the ACL lesion. Arthroscopic reconstruction of the ligament improved neither the knee proprioception nor the somatosensory central conduction. Conclusion - We suggest that the loss of the knee mechanoreceptors can be followed by modifications of the central nervous system, which are not compensated by other nervous structures
space and time resolved diagnostics of the enea euv discharge produced plasma source used for metrology and other applications
A discharge-produced-plasma (DPP) source emitting in the extreme ultraviolet (EUV) spectral region is running at the ENEA Frascati Research Centre. The plasma is generated in low-pressure xenon gas and efficiently emits 100-ns duration radiation pulses in the 10–20-nm wavelength range, with an energy of
at a 10-Hz repetition rate. The complex discharge evolution is constantly examined and controlled with electrical measurements, while a ns-gated CCD camera allowed observation of the discharge development in the visible, detection of time-resolved plasma-column pinching, and optimization of the pre-ionization timing. Accurately calibrated Zr-filtered PIN diodes are used to monitor the temporal behaviour and energy emission of the EUV pulses, while the calibration of a dosimetric film allows quantitative imaging of the emitted radiation. This comprehensive plasma diagnostics has demonstrated its effectiveness in suitably adjusting the source configuration for several applications, such as exposures of photonic materials and innovative photoresists
Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)
GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground
observatory for proton decay search, neutrino astrophysics and CP-violation
studies in the lepton sector. Possible underground sites are studied within the
FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration
with KEK (Japan). The concept is scalable to very large masses.Comment: 4 pages, 1 figure, Contribution to the Workshop "European Strategy
for Future Neutrino Physics", CERN, Oct. 200
Covid-19 and covid-like patients: A brief analysis and findings of two deceased cases
BACKGROUND: The predominant pattern of lung lesions in patients affected by coronavirus disease (COVID-19) disease is diffuse alveolar damage with massive thromboembolism similar as described in patients infected with severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronaviruses. Hyaline membrane formation and pneumocyte atypical hyperplasia were frequent. Importantly, the formation of platelet– fibrin thrombi in small vessels was seen consistent with coagulopathy, which appeared to be a common feature in patients who died of COVID-19. However, many were the cases found with similar COVID-19 symptomatology though negative results from nasal-pharyngeal swab performed by reverse transcription-polymerase chain reaction (RT-PCR). This latter typology of patients, otherwise named COVID-like, showed analogous clinical signs with similar arterial blood gas, cell blood count and laboratory parameters, and same computed tomography (CT)-scan ground-glass opacities. Symptoms such as cough, fever, and difficulty breathing were highly similar as well. Both forms, COVID-19 and COVID-like, are primarily respiratory with multi-organ involvement and both revealed comparable incubation periods often with a rapid onset and unexpected decay. CASE REPORT: In this brief paper, we described two cases regarding two deceased males, one confirmed COVID-19 (RT-PCR but not CT scan) and the second a COVID-like (negative for RT-PCR but positive to CT scan with ground-glass opacity) whom condition, disease patterns, and analysis were highly similar. CONCLUSION: Improved investigation is mandatory, in which RT-PCR and CT scan procedures are completed by data from more detailed laboratory analysis, ABG analysis, BALF, and a deeper clinical assessment
Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster
Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations
The Abundance Distribution in the Extrasolar-Planet Host Star HD19994
Abundances of 22 elements have been determined from a high-resolution, high
signal-to-noise spectrum of HD19994, a star recently announced as harboring an
extrasolar planet. A detailed spectroscopic analysis of this stars finds it to
have a mass of 1.2+/-0.1Msun. HD19994 is found to be slightly enriched in
"metals" relative to the Sun 9[Fe/H]=+0.09+/-0.05 and an average of all metals
of [m/H]=+0.13), as are most stars known with extrasolar planets. In a search
for possible signatures of accretion of metal-rich gas onto the parent stars
(using HD19994 and published abundances for other stars), it is found that a
small subset of stars with planets exhibit a trend of increasing [X/H] with
increasing condensation temperature for a given element X. This trend may point
to the accretion of chemically fractionated solid material into the outer
(thin) convection zones of these solar-type stars. It is also found that this
small group of stars exhibiting an accretion signature all have large planets
orbiting much closer than is found, in general, for stars with planets not
showing this peculiar abundance trend, suggesting a physical link between
accretion and orbital separation. In addition, the stars showing evidence of
fractionated accretion are, on average, of larger mass (1.2Msun) than stars not
showing measurable evidence of accretion (1.0Msun).Comment: 19 pages, 4 tables, 13 figures, Astronomical Journal, in pres
- …