1,892 research outputs found

    The Polyakov action on the supertorus

    Get PDF
    A consistent method for obtaining a well-defined Polyakov action on the supertorus is presented. This method uses the covariantization of derivative operators and enables us to construct a Polyakov action which is globally defined.Comment: 15 pages LaTe

    Induced quantum gravity on a Riemann Surface

    Full text link
    Induced quantum gravity dynamics built over a Riemann surface is studied in arbitrary dimension. Local coordinates on the target space are given by means of the Laguerre-Forsyth construction. A simple model is proposed and pertubatively quantized. In doing so, the classical W-symmetry turns out to be preserved on-shell at any order of the ℏ\hbar perturbative expansion. As a main result, due to quantum corrections, the target coordinates acquire a non-trivial character.Comment: LaTex, 32 pages, no figures, submitted to Int. J. Mod. Phys.

    Induced Polyakov supergravity on Riemann surfaces of higher genus

    Full text link
    An effective action is obtained for the N=1N=1, 2D−2D-induced supergravity on a compact super Riemann surface (without boundary) Σ^\hat\Sigma of genus g>1g>1, as the general solution of the corresponding superconformal Ward identity. This is accomplished by defining a new super integration theory on Σ^\hat\Sigma which includes a new formulation of the super Stokes theorem and residue calculus in the superfield formalism. Another crucial ingredient is the notion of polydromic fields. The resulting action is shown to be well-defined and free of singularities on \sig. As a by-product, we point out a morphism between the diffeomorphism symmetry and holomorphic properties.Comment: LPTB 93-10, Latex file 20 page

    Large Chiral Diffeomorphisms on Riemann Surfaces and W-algebras

    Full text link
    The diffeomorphism action lifted on truncated (chiral) Taylor expansion of a complex scalar field over a Riemann surface is presented in the paper under the name of large diffeomorphisms. After an heuristic approach, we show how a linear truncation in the Taylor expansion can generate an algebra of symmetry characterized by some structure functions. Such a linear truncation is explicitly realized by introducing the notion of Forsyth frame over the Riemann surface with the help of a conformally covariant algebraic differential equation. The large chiral diffeomorphism action is then implemented through a B.R.S. formulation (for a given order of truncation) leading to a more algebraic set up. In this context the ghost fields behave as holomorphically covariant jets. Subsequently, the link with the so called W-algebras is made explicit once the ghost parameters are turned from jets into tensorial ghost ones. We give a general solution with the help of the structure functions pertaining to all the possible truncations lower or equal to the given order. This provides another contribution to the relationship between KdV flows and W-diffeomorphimsComment: LaTeX file, 31 pages, no figure. Version to appear in J. Math. Phys. Work partly supported by Region PACA and INF

    W-algebras from symplectomorphisms

    Get PDF
    It is shown how WW-algebras emerge from very peculiar canonical transformations with respect to the canonical symplectic structure on a compact Riemann surface. The action of smooth diffeomorphisms of the cotangent bundle on suitable generating functions is written in the BRS framework while a WW-symmetry is exhibited. Subsequently, the complex structure of the symmetry spaces is studied and the related BRS properties are discussed. The specific example of the so-called W3W_3-algebra is treated in relation to some other different approaches.Comment: LaTex, 25 pages, no figures, to appear in Journ. Math. Phy

    Serum deprivation alters lipid profile in HN9.10e embryonic hippocampal cells

    Get PDF
    The understanding of the mechanism of apoptosis is important to improve the use of stem cells for the treatment of neurodegenerative disorders. Sphingolipids are bioactive molecules involved in the regulation of cell fate. In HN9.10e embryonic hippocampal cells, serum deprivation induces apoptosis preceded by sphingomyelinase activation and raise of ceramide levels. Increasing evidence indicates that individual ceramide species regulated by specific pathways in distinct subcellular compartments might carry out distinct cellular functions, but the ceramides species involved in embryonic hippocampal cell death induced by growth factor deprivation are unknown. In the present paper, by using the UFLC-MS/MS methodology, we have investigated the effect of serum deprivation on the lipid profile in HN9.10e cells. At 48h of serum deprivation, we detected a decrease in cholesterol and increase in sphingosine-1-phoshate 18:1, phosphatidylcholine 18:1 18:0, sphingomyelin 18:1 16:0 and in ceramides 18:1 16:0; we also found an increase in saturated/unsaturated fatty acid ratio in sphingomyelin. We hypothesize that the rearrangement of sphingo- and glycerolipids with increase of saturated fatty acids in serum-deprivated, neural cells might represent a cellular response aimed at holding cholesterol inside the cells

    Characterization of multilayer stack parameters from X-ray reflectivity data using the PPM program: measurements and comparison with TEM results

    Full text link
    Future hard (10 -100 keV) X-ray telescopes (SIMBOL-X, Con-X, HEXIT-SAT, XEUS) will implement focusing optics with multilayer coatings: in view of the production of these optics we are exploring several deposition techniques for the reflective coatings. In order to evaluate the achievable optical performance X-Ray Reflectivity (XRR) measurements are performed, which are powerful tools for the in-depth characterization of multilayer properties (roughness, thickness and density distribution). An exact extraction of the stack parameters is however difficult because the XRR scans depend on them in a complex way. The PPM code, developed at ERSF in the past years, is able to derive the layer-by-layer properties of multilayer structures from semi-automatic XRR scan fittings by means of a global minimization procedure in the parameters space. In this work we will present the PPM modeling of some multilayer stacks (Pt/C and Ni/C) deposited by simple e-beam evaporation. Moreover, in order to verify the predictions of PPM, the obtained results are compared with TEM profiles taken on the same set of samples. As we will show, PPM results are in good agreement with the TEM findings. In addition, we show that the accurate fitting returns a physically correct evaluation of the variation of layers thickness through the stack, whereas the thickness trend derived from TEM profiles can be altered by the superposition of roughness profiles in the sample image

    Carnot-Caratheodory metric and gauge fluctuation in Noncommutative Geometry

    Full text link
    Gauge fields have a natural metric interpretation in terms of horizontal distance. The latest, also called Carnot-Caratheodory or subriemannian distance, is by definition the length of the shortest horizontal path between points, that is to say the shortest path whose tangent vector is everywhere horizontal with respect to the gauge connection. In noncommutative geometry all the metric information is encoded within the Dirac operator D. In the classical case, i.e. commutative, Connes's distance formula allows to extract from D the geodesic distance on a riemannian spin manifold. In the case of a gauge theory with a gauge field A, the geometry of the associated U(n)-vector bundle is described by the covariant Dirac operator D+A. What is the distance encoded within this operator ? It was expected that the noncommutative geometry distance d defined by a covariant Dirac operator was intimately linked to the Carnot-Caratheodory distance dh defined by A. In this paper we precise this link, showing that the equality of d and dh strongly depends on the holonomy of the connection. Quite interestingly we exhibit an elementary example, based on a 2 torus, in which the noncommutative distance has a very simple expression and simultaneously avoids the main drawbacks of the riemannian metric (no discontinuity of the derivative of the distance function at the cut-locus) and of the subriemannian one (memory of the structure of the fiber).Comment: published version with additional figures to make the proof more readable. Typos corrected in this ultimate versio

    Supersymmetric structure of the induced W gravities

    Get PDF
    We derive the supersymmetric structure present in W-gravities which has been already observed in various contexts as Yang-Mills theory, topological field theories, bosonic string and chiral W_{3}-gravity. This derivation which is made in the geometrical framework of Zucchini, necessitates the introduction of an appropriate new basis of variables which replace the canonical fields and their derivatives. This construction is used, in the W_{2}-case, to deduce from the Chern-Simons action the Wess-Zumino-Polyakov action.Comment: 17 pages, Latex. To appear in Class. Quantum. Gravit
    • 

    corecore