161 research outputs found

    Substrate texture properties induce triatomine probing on bitten warm surfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In this work we initially evaluated whether the biting process of <it>Rhodnius prolixus </it>relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae.</p> <p>Results</p> <p>The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects.</p> <p>Conclusions</p> <p>Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.</p

    Genetic basis of triatomine behavior: lessons from available insect genomes

    Full text link

    Strong Host-Feeding Preferences of the Vector Triatoma infestans Modified by Vector Density: Implications for the Epidemiology of Chagas Disease

    Get PDF
    Chagas disease is a complex zoonosis with more than 150 mammalian host species, nearly a dozen blood-sucking triatomine species as main vectors, and 9–11 million people infected with Trypanosoma cruzi (its causal agent) in the Americas. Triatoma infestans, a highly domesticated species and one of the main vectors, feeds more often on domestic animals than on humans in northern Argentina. The question of whether there are host-feeding preferences among dogs, cats, and chickens is crucial to estimating transmission risks and predicting the effects of control tactics targeting them. This article reports the first host choice experiments of triatomine bugs conducted in small huts under natural conditions. The results demonstrate that T. infestans consistently preferred dogs to chickens or cats, with host shifts occurring more frequently at higher vector densities. Combined with earlier findings showing that dogs have high infection rates, are highly infectious, and have high contact rates with humans and domestic bugs, our results reinforce the role of dogs as the key reservoirs of T. cruzi. The strong bug preference for dogs can be exploited to target dogs with topical lotions or insecticide-impregnated collars to turn them into baited lethal traps or use them as transmission or infestation sentinels

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors
    corecore