254 research outputs found

    Personal exposure of children to formaldehyde in Perth, Western Australia

    Get PDF
    Formaldehyde is a common air pollutant that tends to be found in elevated concentrations in indoor air. Exposure to formaldehyde has the potential to impact on respiratory health, particularly amongst sensitive individuals and populations, including children. Children spend most of their time indoors at home, however, there are very little data on the contribution of formaldehyde concentrations in homes to personal exposure in children. The principal aim of this cross sectional study was to investigate whether the domestic environment is the most significant source of personal exposure of formaldehyde in children. Forty-one primary school children (aged between 8 and 12) were recruited from two areas of Perth, Western Australia. Each child wore a personal passive formaldehyde sampler over a 24 hour period on two separate occasions, winter and summer. Samplers were also located indoors at home, outdoors at centralised locations and indoors at school for the corresponding period. A questionnaire about lifestyle and behaviour and a daily activity diary were completed for each participant. Passive samplers used filter papers impregnated with 2,4-dinitrophenylhadrazine (DNPH), with formaldehyde detected using high pressure liquid chromatography (HPLC). In winter there was a wide range of personal exposure concentrations, with geometric mean concentrations of 9.7ppb at Duncraig and 11.5ppb at Calista. Indoor geometric mean concentrations at Duncraig were l0.lppb, with outdoor and classroom concentrations below the analytical limit of detection (4ppb). At Calista, mean indoor concentrations were 14.2ppb. The outdoor concentrations were below the limit of detection and school concentrations were 8.0ppb. Summer monitoring occurred during mild meteorological conditions and were very similar to winter results. Geometric mean personal exposure concentrations were 9.2ppb at Duncraig and 8.0ppb at Calista. Indoor geometric mean concentrations at Duncraig were 9.0ppb, with outdoor and classroom concentrations below the limit of detection (4ppb). At Calista, mean indoor concentrations were 9.9ppb, outdoor was below detection limit and school concentrations were l5.2ppb. There were strong correlations between personal exposure and domestic concentrations at both Duncraig and Calista in winter (r2 = 0.73 and 0.88, respectively) and in summer (r2 = 0.67 and 0.84, respectively). The correlation for both seasons combined was significant, with a coefficient of r2 = 0. 78. A time weighted model estimated personal exposure concentrations for each participant using stationary measures in combination with time activity data. These estimates of exposure correlated significantly with measured personal exposure concentrations, with a coefficient of r2 = 0.80 for all data combined. The indoor domestic environment was found to be the most important source of formaldehyde exposure for children. Time weighting was found to provide a stronger estimate of personal exposure than indoor air monitoring alone, although the time weighted model was not a significant improvement over the indoor measure alone

    The diet of the Tasmanian Devil, Sarcophilus harrisii, as determined from analysis of scat and stomach contents

    Get PDF
    Knowledge of the diets of carnivores is an essential precursor to understanding their role as predators in ecosystems. To date, understanding of the diet of Tasmanian Devils, Sarcophilus harrisii, is limited and based upon largely qualitative descriptions. We examined the diets of Tasmanian Devils at six sites by identifying undigested hair, bone and feathers found in their scats. These sites range across different habitat types in coastal and inland Tasmania, and encompass devil populations that are known as both free of the Devil Facial Tumour Disease (DFTD) and populations that are infected by the disease. Tasmanian Devil scats at coastal sites (n=27) contained ten species of mammal, as well as birds, fish and insects. Scats collected from inland sites (n= 17) were comprised of six mammalian species, birds and invertebrates. The most common food items were birds, Common Brushtail and Ringtail possums (Trichosurus vulpecula and Pseudocheirus peregrinus respectively), Tasmanian Pademelons (Thylogale billardierii) and Bennett's Wallabies (Macropus ruftgriseus). O fall the scats, 61% contained only one food group, 32% contained two groups, 4% contained three food items and only one scat (2%) contained four food groups. We supplement this information with stomach contents from road-killed devils, and compare our results with those of previous studies, with a view to furthering our understanding ofthe ecology ofthe threatened Tasmanian Devil. Such information will be important for the management of wild and captive devil populations, particularly in light of DFTD

    Complete Genome Sequence of Stenotrophomonas maltophilia Strain CF13, Recovered from Sputum from an Australian Cystic Fibrosis Patient.

    Full text link
    Stenotrophomonas maltophilia isolate CF13 is a multidrug-resistant isolate that was recovered in Sydney, Australia, in 2011, from a sputum sample from an individual with cystic fibrosis. The genome sequence of CF13 was completed using long- and short-read technologies

    Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction

    Get PDF
    Most pathogens threatening to cause extinction of a host species are maintained on one or more reservoir hosts, in addition to the species that is threatened by disease. Further, most conventional host–pathogen theory assumes that transmission is related to host density, and therefore a pathogen should become extinct before its sole host. Tasmanian devil facial tumor disease is a recently emerged infectious cancer that has led to massive population declines and grave concerns for the future persistence of this largest surviving marsupial carnivore. Here we report the results of mark–recapture studies at six sites and use these data to estimate epidemiological parameters critical to both accurately assessing the risk of extinction from this disease and effectively managing this disease threat. Three sites were monitored from before or close to the time of disease arrival, and at three others disease was well established when trapping began, in one site for at least 10 years. We found no evidence for sex-specific differences in disease prevalence and little evidence of consistent seasonal variation in the force of infection. At all sites, the disease was maintained at high levels of prevalence (>50% in 2–3-year-old animals), despite causing major population declines. We also provide the first estimates of the basic reproductive rate R0 for this disease. Using a simple age-structured deterministic model, we show that our results are not consistent with transmission being proportional to the density of infected hosts but are consistent with frequency-dependent transmission. This conclusion is further supported by the observation that local disease prevalence in 2–3-year-olds still exceeds 50% at a site where population density has been reduced by up to 90% in the past 12 years. These findings lend considerable weight to concerns that this host-specific pathogen will cause the extinction of the Tasmanian devil. Our study highlights the importance of rapidly implementing monitoring programs to determine how transmission depends on host density and emphasizes the need for ongoing management strategies involving a disease-free “insurance population,” along with ongoing field monitoring programs to confirm whether local population extinction occur

    T Helper 1 and T Helper 2 Cells Are Pathogenic in an Antigen-specific Model of Colitis

    Get PDF
    Dysregulated T cell responses to enteric bacteria have been implicated as a common mechanism underlying pathogenesis in rodent models of colitis. However, the bacterial species and T cell specificities that induce disease have been poorly defined. We have developed a model system in which target antigen, bacterial host, and corresponding T cell specificity are defined. OVA-specific T cells from DO11.RAG-2−/− TCR transgenic mice were transferred into RAG-2−/− recipients whose intestinal tracts were colonized with OVA-expressing or control Escherichia coli. Transfer of antigen-naive DO11.RAG-2−/− T cells into recipients colonized with OVA-E. coli resulted in enhanced intestinal recruitment and cell cycling of OVA-specific T cells; however, there was no development of disease. In contrast, transfer of polarized T helper (Th) 1 and Th2 populations resulted in severe wasting and colitis in recipients colonized with OVA-expressing but not control E. coli. The histopathologic features of disease induced by Th1 and Th2 transfers were distinct, but disease severity was comparable. Induction of disease by both Th1 and Th2 transfers was dependent on bacterially associated OVA. These results establish that a single bacterially associated antigen can drive the progression of colitis mediated by both Th1 and Th2 cells and provide a new model for understanding the immunoregulatory interactions between T cells responsive to gut floral antigens

    Cell wall deficiency – an alternate bacterial lifestyle?

    Get PDF
    Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof. In doing so, we will present evidence that not all CWD variants are alike and that, at least in some cases, CWD variants arise through an adaptive lifestyle switch that enables them to live and thrive without a cell wall, often to avoid antimicrobial activity. Finally, the implications of CWD bacteria in recurring infections, tolerance to antibiotic therapy and antimicrobial resistance will be examined to illustrate the importance of greater understanding of the CWD bacteria in human health and disease

    NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target.

    Full text link
    The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA.IMPORTANCE The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The host-specific nature of P. aeruginosa virulence adds complexity to the discovery of these types of targets. Using a sequence of in vitro assays and phylogenetically diverse in vivo disease models, we have identified a PA4130 mutant with reduced production in a number of virulence traits and severe attenuation across all infection models tested. Characterization of PA4130 revealed that it is a ferredoxin-nitrite reductase and hence was named NirA. These results, together with attenuation of nirA mutants in different clinical isolates, high level conservation of its gene product in P. aeruginosa genomes, and the lack of orthologues in human genomes, make NirA an attractive antivirulence target

    Language motivation in a reconfigured Europe: access, identity, autonomy

    Get PDF
    In this paper, I propose that we need to develop an appropriate set of conceptual tools for examining motivational issues pertaining to linguistic diversity, mobility and social integration in a rapidly changing and expanding Europe. I begin by drawing on research that has begun to reframe the concept of integrative motivation in the context of theories of self and identity. Expanding the notion of identity, I discuss the contribution of the Council of Europe's European Language Portfolio in promoting a view of motivation as the development of a plurilingual European identity and the enabling of access and mobility across a multilingual Europe. Next, I critically examine the assumption that the individual pursuit of a plurilingual identity is unproblematic, by highlighting the social context in which motivation and identity are constructed and embedded. To illuminate the role of this social context, I explore three inter-related theoretical frameworks: poststructuralist perspectives on language motivation as 'investment'; sociocultural theory; and theories of autonomy in language education. I conclude with the key message that, as with autonomy, language motivation today has an inescapably political dimension of which we need to take greater account in our research and pedagogical practice

    Unbiased analysis of pancreatic cancer radiation resistance reveals cholesterol biosynthesis as a novel target for radiosensitisation.

    Get PDF
    BACKGROUND: Despite its promise as a highly useful therapy for pancreatic cancer (PC), the addition of external beam radiation therapy to PC treatment has shown varying success in clinical trials. Understanding PC radioresistance and discovery of methods to sensitise PC to radiation will increase patient survival and improve quality of life. In this study, we identified PC radioresistance-associated pathways using global, unbiased techniques. METHODS: Radioresistant cells were generated by sequential irradiation and recovery, and global genome cDNA microarray analysis was performed to identify differentially expressed genes in radiosensitive and radioresistant cells. Ingenuity pathway analysis was performed to discover cellular pathways and functions associated with differential radioresponse and identify potential small-molecule inhibitors for radiosensitisation. The expression of FDPS, one of the most differentially expressed genes, was determined in human PC tissues by IHC and the impact of its pharmacological inhibition with zoledronic acid (ZOL, Zometa) on radiosensitivity was determined by colony-forming assays. The radiosensitising effect of Zol in vivo was determined using allograft transplantation mouse model. RESULTS: Microarray analysis indicated that 11 genes (FDPS, ACAT2, AG2, CLDN7, DHCR7, ELFN2, FASN, SC4MOL, SIX6, SLC12A2, and SQLE) were consistently associated with radioresistance in the cell lines, a majority of which are involved in cholesterol biosynthesis. We demonstrated that knockdown of farnesyl diphosphate synthase (FDPS), a branchpoint enzyme of the cholesterol synthesis pathway, radiosensitised PC cells. FDPS was significantly overexpressed in human PC tumour tissues compared with healthy pancreas samples. Also, pharmacologic inhibition of FDPS by ZOL radiosensitised PC cell lines, with a radiation enhancement ratio between 1.26 and 1.5. Further, ZOL treatment resulted in radiosensitisation of PC tumours in an allograft mouse model. CONCLUSIONS: Unbiased pathway analysis of radioresistance allowed for the discovery of novel pathways associated with resistance to ionising radiation in PC. Specifically, our analysis indicates the importance of the cholesterol synthesis pathway in PC radioresistance. Further, a novel radiosensitiser, ZOL, showed promising results and warrants further study into the universality of these findings in PC, as well as the true potential of this drug as a clinical radiosensitiser

    Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping

    Get PDF
    The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
    corecore